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“Young man, in mathematics you don’t understand things,  

you just get used to them.” 

 

John von Neumann. 
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ABSTRACT 

 
Research into the improvement of the Aircraft Conceptual Design process by the 
application of Multidisciplinary Optimization (MDO) is presented. Aircraft conceptual 
design analysis codes were incorporated into a variety of optimization methods including 
Orthogonal Steepest Descent (full-factorial stepping search), Monte Carlo, a mutation-
based Evolutionary Algorithm, and three variants of the Genetic Algorithm with 
numerous options. These were compared in the optimization of four notional aircraft 
concepts, namely an advanced multirole export fighter, a commercial airliner, a flying-
wing UAV, and a general aviation twin of novel asymmetric configuration. To better 
stress the methods, the commercial airliner design was deliberately modified for certain 
case runs to reflect a very poor initial choice of design parameters including wing 
loading, sweep, and aspect ratio. 
 
MDO methods were evaluated in terms of their ability to find the optimal aircraft, as well 
as total execution time, convergence history, tendencies to get caught in a local optimum, 
sensitivity to the actual problem posed, and overall ease of programming and operation. 
In all, more than a million parametric variations of these aircraft designs were defined 
and analyzed in the course of this research.  
 
Following this assessment of the optimization methods, they were used to study the issue 
of how the computer optimization routine modifies the aircraft geometric inputs to the 
analysis modules as the design is parametrically changed. Since this will ultimately drive 
the final result obtained, this subject deserves serious attention. To investigate this 
subject, procedures for automated redesign which are suitable for aircraft conceptual 
design MDO were postulated, programmed, and evaluated as to their impact on 
optimization results for the sample aircraft and on the realism of the computer-defined 
“optimum” aircraft. (These are sometimes called vehicle scaling laws, but should not be 
confused with aircraft sizing, also called scaling in some circles.) 
 
This study produced several key results with application to both Aircraft Conceptual 
Design and Multidisciplinary Optimization, namely: 
 

• MDO techniques truly can improve the weight and cost of an aircraft design concept 
in the conceptual design phase. This is accomplished by a relatively small “tweaking” 
of the key design variables, and with no additional downstream costs. In effect, we get 

a better airplane for free. 

• For a smaller number of variables (<6-8), a deterministic searching method (here 
represented by the full-factorial Orthogonal Steepest Descent) provides a slightly 
better final result  with about the same number of case evaluations 

• For more variables, evolutionary/genetic methods get close to the best final result 
with far-fewer case evaluations. The eight variables studied herein probably represent 
the practical upper limit on deterministic searching methods with today’s computer 
speeds. 

• Of the evolutionary methods studied herein, the Breeder Pool approach (which was 
devised during this research and appears to be new) seems to provide convergence in 
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the fewest number of case evaluations, and yields results very close to the 
deterministic best result. However, all of the methods studied produced similar results 
and any of them is a suitable candidate for use. 

• Hybrid methods, with a stochastic initial optimization followed by a deterministic 
final “fine tuning”, proved less desirable than anticipated. 

• Not a single case was observed, in over a hundred case runs totaling over a million 
parametric design evaluations, of a method returning a local rather than global 
optimum. Even the modified commercial airliner, with poorly selected initial design 
variables far away from the global solution, was easily “fixed” by all the MDO 
methods studied. 

• The postulated set of automated redesign procedures and geometric constraints 
provide a more-realistic final result, preventing attainment of an unrealistic “better” 
final result. Especially useful is a new approach defined herein, Net Design Volume, 
which can prevent unrealistically high design densities with relatively little setup and 
computational overhead. Further work in this area is suggested, especially in the 
unexplored area of automated redesign procedures for discrete variables. 
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NOMENCLATURE 
 
A  = Aspect Ratio (span2/reference area, applied to wings and tails) 
APU  = Auxiliary Power Unit 
Breguet Range  

Equation = Classical range calculation method  (see Raymer11) 
C   = Specific Fuel Consumption  
CL  = Wing Lift Coefficient 
CL-design = Wing Design Lift Coefficient (used to optimize camber, twist, & airfoil) 
CAD  = Computer-Aided Design 
CER  = Cost Estimating Relationship 
CFD  = Computational Fluid Dynamics 
DAPCA = Development and Procurement Cost of Aircraft (cost model) 
DATCOM = Data Compendium (USAF handbook of classical aerodynamic analysis) 
f  = fuselage fineness ratio=length/diameter  
FAR  = Federal Aviation Regulations (USA equivalent of JAR) 
fineness ratio =Length/diameter (usually of fuselage) 
GA  = Genetic Algorithm 
JAR  = Joint Aviation Requirements (European equivalent of FAR) 
kgsm  = kg/square meter  
KTH  = Kungliga Tekniska Högskolan  (Swedish Royal Institute of Technology) 
L/D   = Lift-to-Drag Ratio 
LE  =Leading Edge (wing or tail) 
M   = Mach Number  
Mcr    = Critical Mach Number 
Mdd   = Drag Divergent Mach Number 
MDO  = Multidisciplinary Optimization 
MOM  = Measure of Merit (Objective Function in optimization) 
NDV  = Net Design Volume 
O&S   = Operations and Support 
OSD  = Orthogonal Steepest Descent 
Ps  = Specific Excess Power 
psf  = pounds per square foot   
P/W  = Power-to-weight ratio of aircraft (engine power/Wo) 
r  = asymptotic convergence rate 
RDS  = Aircraft design software package (“Raymer’s Design System”) 

RS  = Response Surface 

SFC   = Specific Fuel Consumption  
t/c  = Airfoil thickness/chord length 
TE  =Trailing Edge (wing or tail) 
TOGW  = Aircraft Takeoff Gross Weight 
T/W  = Thrust-to-weight ratio 
W/S  = Wing loading (weight/area) 
We  = Aircraft Empty Weight 
Wo  = Aircraft Takeoff Gross Weight 
UAV   = Unmanned or Uninhabited Aerial Vehicle 
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1 INTRODUCTION     

1.1 Overview 

Aircraft designers have always tried to make their newest design the “best ever”, and 
have eagerly used the latest tools at their disposal to determine the combination of design 
features and characteristics that will produce that “best.” The Wright Brothers performed 
parametric wind tunnel trade studies of wing aspect ratio and camber, and part of their 
eventual success was due to this early form of optimization1. Subsequent generations of 
aircraft designers have learned how to make “carpet plots” for two-variable 
optimizations, and have laboriously extended that to a dozen or so variables by repetition 
and cross-plot. When electronic computers became available, aircraft designers gladly 
accepted their help in the repetitive calculations required for aircraft design optimization 
(see Ashley2 for a definitive survey of aerospace optimization as of the late 1970’s). 
 
Today improved techniques for the optimization of complicated engineering problems are 
emerging from universities and research laboratories. These are being applied to the 
aircraft design process as soon as the designers perceive that the methods have become 
mature and practical enough to help to find a better “best”, in a reasonable amount of 
time.  
 
These new techniques usually go by the generic title “Multidisciplinary Optimization”, or 
MDO. They are suitable for optimization of entire systems including aircraft vehicle 
configurations. As defined by a leading MDO researcher and proponent, MDO is “A 
methodology for design of complex engineering systems that are governed by mutually 
interacting physical phenomena and made up of distinct interacting subsystems (suitable 
for systems for which) in their design, everything influences everything else” (Sobieski3).  
 
MDO permits optimization of a number of design variables affecting disparate functional 
disciplines, using system-level measures of merit, and in the presence of multiple system 
design constraints. As applied to aircraft, this should result in reduced acquisition and 
operating costs and/or better system performance. Researchers are applying a number of 
these techniques to aircraft vehicle design with intriguing results (Macmillin4, Blasi5, 
Raymer6), and MDO has begun to find application to “real” design projects at major 
aircraft companies (Cassidy34). In the future, MDO promises to be a key part of the 
aircraft designer's toolbox. 
 
There are a wide variety of MDO methods in development, and the current debate is quite 
heated as to which ones are best for various applications. Even within a general form of 
MDO, different researchers prefer different combinations of specific features. It remains 
difficult or impossible to draw general conclusions from the literature as to which 
methods one should use for a particular application. One thing seems clear – the “best” 
MDO method depends on the problem being solved.   
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MDO methods fall into several categories. Many of them are based on classical 
mathematical optimization involving definition of governing equations of an objective 
function, and calculation of derivatives to find the optimum. Other methods do not – they 
rely solely on calculation of actual values of objective functions and use some form of 
direct comparisons to find an optimum.  
 
This research concentrates exclusively on the latter types of MDO, called zero

th
-order or 

non-gradient methods† because they do not involve determinations of derivatives or 
slopes. Such methods permit optimization using existing aircraft analysis software, and 
furthermore, such methods permit extreme complexity in the aircraft analysis.  
 
For example, in the real world of aircraft range calculation one does not simply employ 
the Breguet Range Equation based on a selected cruise speed. Instead, for each design 
variation one must usually determine optimal speed and altitude with consideration for 
factors such as continuous power limits, engine overspeed limits, stall margins, air traffic 
regulations, temperature limits, and the actual, non-simple variations of lift, drag, thrust, 
and fuel consumption with speed and altitude. Once the desired speed and altitude are 
found, the range must be calculated taking into account the fact that the Breguet Range 
Equation is only valid over a small change in aircraft weight (the usual assumption that 
the use of the cruise-climb technique fixes this problem is not completely correct 
because, in the act of climbing, the L/D and fuel consumption actually change by some 
small amount).  
 
In this author’s opinion, this complexity in real-world calculations reduces the realism of 
methods based on defining governing equations and taking mathematical derivatives of 
those equations. One simply cannot develop closed-form equations that include all the 
real-world factors. Warn other authors, “We do not advocate over-simplification or 
distortion in formulation simply in order to be able to solve the eventual optimization 
problem more easily” (Gill, Murray, & Wright7). Note that methods using numerically 
generated gradients rather than mathematical derivative calculations do not limit analysis 
complexity, but they suffer from numerical “noise” generated during repeated function 
calls. 
 
As will be described below, there are distinct phases of aircraft design, and there are 
many perceptions as to what aspects of an aircraft design can and should be subjected to 
an MDO study. The present research focuses solely on the earliest phase of aircraft 
design, namely conceptual design, in which the broadest design features are being 

                                                 
† The terminology zero

th
-order as applied to optimization methods should not be confused with the quality 

of the analysis methods, which some authors break into quality levels called first order methods, second 

order methods, etc… This author does not employ such terminology, preferring to encourage the use of the 
best quality methods that can be employed in an amount of time reasonable for each phase of the design 
process. This changes as the years go by and new methods are developed, new codes are offered, and new 
computers get better. In any case, the term zero

th
-order should not somehow imply that these methods are 

even worse than first-order methods! The zero
th

-order methods for optimization can be employed with so-
called first-order analysis methods, or with so-called second-order analysis methods equivalent to those 
used herein, or with highly sophisticated methods such as CFD and structural FEM. 
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determined such as number and size of engines, wing area and planform shape, and 
fuselage length and arrangement. This is done in the context of a search among multiple 
configurations and alternative design concepts, so the analysis and optimization methods 
to be employed cannot have excessive set up time, nor requirements for highly complex 
geometric inputs.  The designers simply don’t have the time to do a full, detailed study of 
each proposed alternative, nor do they have enough time to employ analysis and 
optimization methods with a time-consuming set up process.  
 
Nor does the industrial design environment lend itself to methodologies and programs 
requiring substantial project-dependent mathematical or procedural development. Any 
approach requiring, say, development and differentiation of governing equations specific 
to a certain design would probably be of little practical use, no matter how “theoretically” 
desirable it may be.  
 
A suite of time-tested, conceptual-level analysis tools is employed in this research, and 
the MDO methods employed are restricted to those zeroth-order methods that can be 
implemented with virtually no additional set up beyond the input data already required 
for aircraft design analysis6. 
 
Another issue of importance to the use of MDO for aircraft conceptual design 
optimization is the actual selection of variables, constraints, and measures of merit. In the 
literature of aircraft MDO, these key parameters are often selected with little formal 
consideration, and sometimes bear little resemblance to the design parameters commonly 
used in industry design offices. An attempt is made herein to address these issues, 
offering a framework for selection and a suggested suite of variables, constraints, and 
measures of merit for various types of aircraft. 
 
In addition to a study of which MDO methods seem best for aircraft conceptual design, 
this research addresses the manner in which the computer routine changes the 
representation of the aircraft design as a result of changes in the design variables. For 
example, an increase in fuselage length usually requires an increase in landing gear 
length to allow the same tail-down angle for takeoff. In the literature of the field, this link 
between the computer optimization and the "real world" is often dismissed with a 
reference to parametric formulas in textbooks such as Nicolai8, Roskam9, Stinton10, or 
Raymer11.  
 
For MDO results to have meaning and utility in the real world of aircraft conceptual 
design, procedures for automated redesign must be defined and employed that 
approximate to a reasonable degree the changes that an experienced human designer 
would make to an existing layout were the variables in question revised. This was 
commonly done in the huge sizing optimization codes of the major aircraft companies12, 
but the set up time of nearly a month precludes use of such methods for many design 
efforts. Furthermore, these are expert programs requiring extensive training and 
continuous experience to obtain reliable results. Research reported herein addresses this 
issue with a postulated set of automatic redesign procedures. 
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To be realistic, though, no set of routines can ever hope to insert complete design realism 
into an MDO method. We cannot even anticipate all real-world problems with a team of 
experts directly involved in the design process. Boeing didn’t learn of a flutter problem 
on the SST program until well into fabrication, and the only solution available was a 
weight increase totaling thousands of pounds. Any previous optimizations done without 
this information were therefore totally invalid.  
 
As all designers know, good information about a design only comes late in the design 
process, when it is often too late to fix things in an optimal fashion. Early in the design 
process it is easy to make changes, but the information about the design is incomplete and 
sometimes incorrect. Sobieski13 words this well - “as the design process advances the 
amount of knowledge about the object of design asymptotically tends to 100%, while the 
freedom to act of that knowledge asymptotically reduces to 0%!” Greater use of high-end 
analysis tools earlier in the design process should improve this, but is beyond the scope of 
this research. 
 

1.2 Objectives and Unique Aspects of this Research 

Objectives: 

• Development and implementation of Aircraft Conceptual Design principles and 
methods in a PC-based system, incorporating vehicle analysis and system-level 
multivariable optimization. 

• Development and implementation of advanced Multidisciplinary Optimization 
(MDO) routines including Evolutionary, Genetic, and Monte Carlo algorithms.  

• Comparative assessment of optimization methods during aircraft conceptual design. 

• Definition and assessment of procedures for geometrical constraints and automated 
air vehicle redesign to enhance optimization realism. 

• Application of methods and optimization techniques to four notional aircraft design 
concepts, and use of them for comparative studies of MDO methods and options. 

 

Unique Aspects of this Research and Contributions to the Field: 

• Development and test of MDO routines based on the design variables, constraints, 
measures of merit, and analysis methods typically used by aircraft designers in 
industry. 

• Development of a tool permitting study of MDO methodologies using exactly the 
same aircraft inputs and analysis methods, thus removing those potential sources of 
“noise” from comparative studies. 

• Definition and validation of Net Design Volume, a measure of the packaging density 
of an aircraft design layout and a geometric constraint for MDO routines that avoids 
unrealistic configurations being defined by the optimizer. 

• Definition and study of Bit-String Affinity, a measure of MDO convergence that is 
simple to implement and gives a useful and clear indication of convergence even for 
MDO routines that do not follow a mathematically pristine convergence rate. 

• Definition and study of the Breeder Pool Genetic Algorithm, an apparently novel 
variant of the basic GA method. 
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1.3 Summary of Major Results and Conclusions  

 
Probably the most important conclusion of this study is that the aircraft conceptual design 
process can be improved by the proper application of Multidisciplinary Optimization 
methods. Such MDO techniques can reduce the weight and cost of an aircraft design 
concept in the conceptual design phase by fairly minor changes to the key design 
variables, and with no additional downstream costs.  
 

In effect, we get a better airplane for free. 
 
These methods are shown to be superior to traditional carpet plots as used in the aircraft 
conceptual design process for many decades, and can become a normal and integral part 
of the definition of a new aircraft design. 
 
The realism of MDO methods is shown to improve by the use of the geometric 
constraints and automated aircraft redesign procedures defined in this research and added 
to the MDO routine. A new geometric constraint approach defined herein, Net Design 

Volume, proved to credibly adjust the design to ensure sufficient volume for fuel and 
internal equipment.  
 
Comparisons between the different MDO methods studied found that all of the methods 
produce reasonable results. For a smaller number of variables the deterministic full-
factorial Orthogonal Steepest Descent searching method provides a slightly better final 
result with about the same number of case evaluations. For more variables, 
evolutionary/genetic methods get nearly the same final result with fewer case evaluations. 
 
Of the evolutionary methods studied herein, the Breeder Pool approach devised during 
this research seems to provide convergence on a good solution in the fewest number of 
case evaluations. 
 
Hybrid methods combining a stochastic initial optimization with a deterministic final 
optimization proved to work no better than either alone. 
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2 BACKGROUND 
 

2.1  Aircraft Design Optimization – Purpose and Importance 

During the development of a new aircraft concept, the optimization of the design to 
provide the desired capabilities at a minimum cost is of paramount importance.  Aircraft 
are incredibly expensive compared to almost any other single man-made item. A new 
four-seat aircraft costs an order of magnitude more than a normal four-seat automobile. A 
large commercial airliner costs roughly half a million dollars per passenger seat, or, 
looked at from another perspective, approximates the cost of a major new high-rise office 
building. The latest manned bomber, depending on how the accounting is done, costs on 
the order of a billion dollars per copy. 
 
These per-plane costs, large though they may be, pale beside the development costs of a 
new aircraft. The recently-let System Design & Development contract for the F-35 Joint 
Strike fighter is officially given as $19 billion14, and that does not include the billions 
spent on closely related technology developments in recent years. Citation X, the new 
business jet from Cessna, cost about a quarter of a billion dollars of company money to 
develop, and took a total of five years before the aircraft was certified at which point 
Cessna could begin to sell the aircraft and hope to recover their investment15. For small 
general-aviation aircraft the development costs are so large compared to the expected 
profits that many designs currently in production are over 40 years old. The development 
costs for a new commercial airliner are so great that the would-be producers literally "bet 
the company” for a major new start. Some companies have lost that bet, and are no more.  
 
From the operator’s point of view, the purchase price (which includes development costs) 
is large but is not usually the largest cost of owning and operating the aircraft. Fuel, 
maintenance, and crew costs over the expected life of a typical aircraft will dwarf the 
amortized purchase price. In the world of commercial aviation, a small percent 
improvement in operating costs will make a large effect on overall airline profitability 
because the profit is determined as a large expense subtracted from a hopefully-larger 
income.  
 
US Congressional Budget Office analysis16 of USAF data indicates that the total 
operating cost of major weapons systems averages over twenty times the capital value 
(equivalent to re-purchase cost). Their definition of operating cost is a broad one, and 
includes fuel, personnel, maintenance, spares, and operation costs of the associated air 
bases – all the expenses required to keep the aircraft operational.  
 
So, aircraft are prodigiously expensive, and any approach that can reduce those outlays 
will be appreciated by the developers and their customers. Specific technologies that can 
reduce cost, such as improved engines, lightweight structures, and advanced control 
systems, are funded for development with just that in mind and are used just as soon as 
the developers and customers believe that the projected savings outweighs the potential 
risks.  
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However, for any selected suite of technologies the cost of a new aircraft can be further 
reduced simply by an improvement in the design process. There are a variety of such 
improvements that can be made, and such improvements have been pursued for as long as 
aircraft have been designed.  
 
One improvement with great payoff has been, and remains, in the area of the actual 
layout of the design. In the early 1940’s a mathematical lofting method based upon the 
application of conic curves was developed at North American Aviation. This so improved 
the design definition that the first aircraft developed with conics, the P-51 Mustang, 
proved to have lower drag than other, similar technology designs, even accounting for the 
other technological advances of the P-5111.  
 
More recently, the development of Computer-Aided Design (CAD) has improved the 
actual design layout process in all phases of aircraft design. CAD has especially 
improved the interface between design and fabrication, through better product definition 
and through computerized numerical control (CNC) machining directly from this digital 
product definition17. Newer aircraft including B-2, F-22, X-35, Eurofighter Typhoon, 
SAAB Gripen, Dassault Raphael, and Beech Premier have all benefited in both cost and 
quality from the application of CAD and CNC.  
 
These examples of design process-driven savings are independent of the application of 
any specific new technologies to the actual aircraft concept, such as an improved material 
or engine. 
 
Optimization methods, the subject of this research, present another area in which 
improvements to the design process can provide substantial savings in cost independent 
of the application of new technologies. Aircraft are designed to specific roles and 
missions, and an improvement in the design process that allows the aircraft to be better 
tailored to its intended usage will reduce cost by the elimination of unneeded “extra” 
capabilities. For example, if a new aircraft design has a takeoff distance that is 
substantially less than that required for operation at its intended airports, that “extra” 
capability provides no additional utility to the operator yet carries a price – probably in an 
overly-large wing and/or engine. An improved design process that would identify this 
early and allow the designers to drive out the excess capability would directly save cost. 
 
Another way that an improved design process can reduce aircraft cost is in the early 
identification of the best possible balance between the disparate desires of the various 
design disciplines. The aerodynamics department generally prefers a thinner wing to 
reduce drag, whereas the structures department prefers a thicker one to reduce weight. 
Identification of the best balance must be done in the context of the aircraft’s roles and 
missions, and has the potential for a substantial overall cost savings. 
 
Specific aircraft optimization methods are discussed below, and span a spectrum from 
simple one-variable parametric trades or even closed-form solutions, to highly 
sophisticated, mathematically based multivariable/multidisciplinary optimization 
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methods. Properly applied, aircraft design optimization offers reduced cost in all phases 
of design. It is the specific intention of this research to improve the aircraft conceptual 
design process by the improved usage of such sophisticated optimization techniques. 
 

2.2  Outline of Aircraft Design Process
‡
  

The actual process of aircraft design must drive the selection of the methods of 
optimization as well as the assumptions and constraints to be observed. Aircraft design is, 
by its very nature, multidisciplinary, and the notion that there is something new about the 
development of optimizations that consider multiple disciplines is viewed with wry 
amusement by those experienced in aircraft conceptual design. In this field, optimizations 
have always included aerodynamics, structures, propulsion, controls, systems, and a host 
of other disciplines. However, emerging MDO techniques provide a more-formalized 
structure to the design optimization process and allow better management of the large 
number of trades necessary to find the optimum design. 
 
Aircraft design can be broken into three major phases, namely Conceptual Design, 

Preliminary Design, and Detail Design. Each of these has different tasks and objectives, 
and the design process in each phase is quite unique from other phases. Thus, the tools to 
be employed differ, and even the people involved are usually different (at least in the big 
companies). These three phases of design are depicted in figure 1. Conceptual and early 
Preliminary Design are the focus of this research.  
 
In Conceptual Design, the basic questions of configuration arrangement, size, weight, and 
performance are answered. Numerous alternative design concepts are prepared in 
response to the design requirements, and numerous variations on those concepts are also 
studied. All design options are “fair game”, and the design space extends as far as the 
designers’ imaginations.  
 
In conceptual design, the design requirements are used to guide and evaluate the 
development of the overall aircraft configuration arrangement. A mathematical process 
called “sizing” is used to calculate what the aircraft takeoff gross weight, empty weight, 
and fuel weight must be for the design to reach the range as specified in the design 
requirements. This calculated weight is used as the starting point in making a design 
arrangement drawing, determining the overall size, wing and tail area, required fuel tank 
volume, and many other aspects of the design. 

                                                 
‡ Portions of this section excerpted and edited from Raymer, AIRCRAFT DESIGN: A Conceptual 

Approach, 199911. For permission to copy contact the author. 
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figure 1. Three Phases of Aircraft Design 

 
Calculated aircraft weight is commonly used as the measure of merit (MOM) in aircraft 
design optimizations, so the implementation of a reliable procedure for calculating it is 
critical to any optimization result. If cost is used as the MOM, the calculated weight is a 
key input to the cost calculation so again, this sizing calculation is critical. 
 
This design arrangement includes wing and tail overall geometry (areas, sweeps, etc.), 
fuselage shape and internal locations of crew, payload, passengers, and equipment, 
engine installation, landing gear, and other design features. The level of detail in 
configuration design is not very deep, but the interactions among all the different 
components are so crucial that it requires years of experience to create a good conceptual 
design. 
 
This initial layout is analyzed to determine if it will perform the design mission. 
Aerodynamics, weights, and installed propulsion characteristics are analyzed and 
subsequently used to do a detailed sizing calculation. Furthermore, the performance 
capabilities of the design are calculated and compared to the design requirements.  
 
A key aspect of conceptual design is that it is a very fluid process, and the design layout 
is always being changed, both to incorporate new things learned about the design and to 
evaluate potential improvements to the design. Trade studies and an ever-increasing level 
of analysis sophistication cause the design to evolve on almost a week-by-week basis, 
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and changes can be made in every aspect of the design including wing geometry, tail 
arrangement, and even the number of engines. Furthermore, during conceptual design a 
number of alternative designs are studied to determine which design approach is 
preferred.  
 
Optimization techniques are used to find the lightest or lowest-cost aircraft that will both 
perform the design mission and meet all performance requirements. The results of this 
optimization include a better estimate of the required total weight and fuel weight to meet 
the mission. The results also include required revisions to the engine and wing sizes. It is 
this optimization during conceptual design that is the key focus of the research described 
herein. 
 
Optimization methods during conceptual design focus on the overall design 
characteristics rather than finer details of the concept. Typical parameters being 
optimized include thrust to weight ratio, wing loading, wing aspect ratio and sweep, and 
fuselage fineness ratio. Design aspects such as the exact airfoil shapes are generally not 
included in optimizations at the conceptual design level because the extra time involved 
is better spent looking at more design concepts and gross design alternatives. Instead, one 
can optimize the overall wing design lift coefficient (CL-design) and have that optimum 
value used as the input to wing design during later efforts. 
 
Due to the fluid nature of the conceptual design process and the rapidity with which the 
design changes and progresses, it is generally concluded that sophisticated analysis tools 
such as CFD and structural FEM are inappropriate at this stage due to the expense, but 
more-importantly, due to the time involved (see Jameson18). A single Reynolds-averaged 
Navier-Stokes analysis for a reasonably complicated aircraft configuration only takes a 
few hours with today’s computers19. This does not count the weeks of set up time to 
develop a workable analysis grid. While conceptual design is usually done on the same 
high-end CAD systems used in later phases of design, the fact that the designers are 
developing and assessing a large number of alternative configurations prevents them from 
spending enough time on each design to assure even zeroth-order continuity between all 
parts and panels, let alone first or second-order continuity as required by CFD.  
 
Instead, robust classical methods such as panel codes and the DATCOM20 are used for 
aerodynamics calculations, and structural weights are estimated by time-proven statistical 
equations. In the aerodynamic analysis, even if CFD could be applied from the first 
design layout it would still be inappropriate because the actual airfoil shapes and the 
distributions of twist and camber have not yet been properly determined. That will not 
occur until the next phase of design, so in conceptual design we need a tool that will, in 
the words of other researchers, “predict the wing drag which the detailed aerodynamic 
design will achieve but even before the detailed aerodynamic design is started21.” 
 
One widely used technique to predict aerodynamic performance prior to final wing 
design is the semi-empirical method of Percent Leading-Edge Suction (see Raymer11). 
This provides a reasonable estimate of the aerodynamic characteristics of a chosen wing 
planform as they will be after the aerodynamics department has completed its 
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optimization effort during the later Preliminary Design effort. Another method involves 
the a-priori use of a sophisticated analysis in a parametric fashion. For the development 
of the Airbus A-380, a mathematical surface was fit to a limited number of detailed 
evaluations to create such a tool21. 
 
Another unique aspect of conceptual design is that it involves design alternatives as well 
as improvements to a specific design concept. This extends to features of the design such 
as number of engines, number of seats across a row, and type of tail. These are discrete, 
or integer variables as opposed to the continuous variables that predominate later stages 
of aircraft design. Inclusion of these in design optimization methods is further discussed 
below. 
 
The area of Conceptual Design has received relatively little attention from the MDO 
development community. In a recent survey paper sponsored by the AIAA MDO 
Technical Committee summarizing industry MDO applications, Giesing and 
Barthelemy22 identified no applications in conceptual design. Less than half the 
applications identified were in early preliminary design. 
  
Preliminary Design can be said to begin when the major changes are over. The big 
questions such as whether to use a canard or an aft tail have been resolved. The 
configuration arrangement can be expected to remain about as shown on current 
drawings, although evolutionary revisions will occur. Preliminary design is characterized 
by a maturation of the selected design approach. The design evolves over a period of 
many months, with an ever-increasing level of understanding of the design, an ever-
increasing level of design and analysis detail, and an ever-increasing level of confidence 
that the design will work.  
 
During Preliminary Design, the one selected aircraft design concept is subjected to a 
continued refinement and optimization. Early Preliminary Design resembles the 
optimizations of Conceptual Design, with analysis and optimization tools being applied 
to revise and improve the design layout in an iterative process. Since only one design is 
being studied in Preliminary Design, it is possible to apply more costly, time-consuming 
methods such as CFD, structural FEM, wind tunnel testing, six-degree-of-freedom flight 
simulation, and sophisticated weight and cost analysis tools. These are phased in as the 
design matures enough that large changes to the configuration become less likely. 
 
During early Preliminary Design, optimization continues on top-level parameters such as 
thrust to weight ratio, wing loading, wing aspect ratio and sweep, and fuselage fineness 
ratio. As the design progresses and major revisions become less likely, optimization 
proceeds towards finer design aspects such as the exact airfoil shapes and the distribution 
of twist and camber, or the best shape for the fuselage to promote laminar flow. This is 
often done by defining shape functions - geometric equations which control the shape and 
are themselves controlled by parametric inputs. Alternatively, aerodynamic optimization 
can be done by specifying desired pressure distributions and searching for a shape that 
will produce it (see Jameson18). By this phase of the design process, the top-level 
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parameters mentioned above are locked in and will not be further changed or optimized 
unless major problems are uncovered. 
 
Also during Preliminary Design, specialists expert in the various design disciplines and 
aircraft subsystems are given the overall design concept and asked to evaluate it and to 
refine the design in their area of expertise. They commonly find areas in which they 
request design modifications, requiring further iterations and refinements of the design 
concept. Following such revisions, the design optimizations must be redone because any 
change to the design layout will likely affect the inputs, and hence the outputs of an 
optimization. 
 
Assuming a favorable decision for entering full-scale development, the Detail Design 
phase begins in which the actual pieces to be fabricated are designed. This last part of the 
design process is characterized by a large number of designers preparing detailed 
drawings or CAD files with actual fabrication geometries and dimensions. Thousands of 
little pieces not considered during conceptual and preliminary design must be designed 
during the detail design phase§. These include flap tracks, brackets, structural clips, doors, 
avionics racks, and similar components. Every single piece of the aircraft's structure and 
its hydraulic, electrical, pneumatic, fuel, and other systems must be designed in detail – 
hence the name.  
 
Optimization in Detail Design tends to be subsystem or part specific, not system-wide. 
Design procedures for structural parts, equipment, wiring, and other areas typically 
include the minimization of weight of those items, but not tradeoffs with other parts or 
systems. Such tradeoffs should have been accomplished during Conceptual and 
Preliminary Design. 
 
As the design progresses through conceptual, preliminary, and detail design, the level of 
detail of the design steadily increases.  This is illustrated in figure 2 for a typical piece of 
aircraft geometry, the front wing spar. The top of figure 2 depicts the design of a front 
wing spar in the amount of detail typical of conceptual design, usually nothing more than 
a straight line in top view at the desired location of the spar. The spar is assumed to be 
approximately the depth of the wing.  
 
While this seems crude, keep in mind that the entire aircraft arrangement is being 
determined at this stage of design, and the interactions between components are more 
important than the exact geometry of any one part. This simple definition answers the key 
questions for the initial conceptual layout: How big can the wing box, wing fuel tank, and 
leading-edge flaps be? If this front spar is moved forward then the wing box gets larger, 
reducing structural weight, but the leading-edge flaps get smaller, reducing their lift 
contribution and requiring a bigger wing to meet, say, a landing distance. The designer 

                                                 
§ In addition to the thousands of pieces that need to be designed, modern high-end aircraft also require the 
development of millions of lines of computer code, with a large impact on development cost. An interesting 
study beyond the current scope would be an optimization that includes an estimate of additional software 
costs as design features are considered that require unique coding, such as the use of relaxed stability or 
integrated propulsion controls. 
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must attempt to trade off these conflicting desires and find a reasonable compromise for 
spar location.  
 

 
 

figure 2. Wing Spar as Defined in Conceptual, Preliminary, and Detail Design 

 
In preliminary design, the example wing spar's overall geometry is refined, including the 
actual shaping of the spar's cross section (middle of figure 2). Fairly sophisticated 
methods are used to perform a structural analysis of the overall spar, with the objective of 
determining the thickness (or number of composite plies) required to handle the expected 
loads. The spar is only one element of the overall structure of the aircraft that will be 
defined in preliminary design, and extensive analysis will be done of the whole structural 
concept to assess and optimize the overall concept.  
 
Note that the spar design in the preliminary design phase is still not in sufficient detail to 
be built. Full consideration has not yet been given to attachments, cutouts, access panels, 
flanges, manufacturing limitations, fuel sealing, and other real-world details. These are 
the subject of detail design (bottom of figure 2), and are typically considered only after 
the aircraft structural concept as a whole has been validated during the preliminary design 
phase.  
 
Towards the end of detail design, the design drawings are of sufficient depth to determine 
the part weights from the volume of various materials as indicated on the drawings. This 
is the first time weight can be assessed by direct calculation – in conceptual and 
preliminary design, statistical methods must be employed. 
 
For a detailed review of the aircraft design process, see Raymer11 chapter three. 
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2.3  Classical Aircraft Optimization Methods
**

 

An informal review of aircraft design textbooks and NACA reports from the 1920’s 
through the 1940’s did not find any mention of an aircraft design optimization method 
other than general advice which can be paraphrased as “hold down the weight, clean up 
the drag, and increase the horsepower.” Planform geometry and powerplant size were 
picked largely by reliance upon prior successful designs with some modest extrapolation 
as better engines became available. Both Prandtl wing theory and the Breguet range 
equation were known by this time, but other than the obvious conclusion favoring 
elliptical lift distributions, no one seems to have attempted a determination of a 
combination of design parameters that would maximize range for a specific aircraft 
concept (or minimize weight and cost). Even as late as 1960, a widely used aircraft 
design textbook stated that “to obtain the optimum combination, the only solution is to 
design a series of three or four airplanes with different combinations and choose the one 
with the lowest direct operating cost” (Corning23). 
 
This points to a methodology dichotomy that is still evident today – that between 
“equational” and “parametric” approaches. Equational approaches involve efforts to write 
meaningful governing equations and solve them mathematically or procedurally. In 1933 
Prandtl24 included wing weight effects in an optimization of spanwise lift distribution, 
yielding a greater loading towards the root than in his own classic elliptical aerodynamic 
optimization. Göthert25 in 1939 developed analytical methods to optimize a wing, using 
span and area as variables. Typical modern analytical optimizations based on derivatives 
of governing equations can be found in Torenbeek26 among others.  
 
However, most industry applications of optimization have relied heavily on the 
parametric approach. These were well described in a 1970’s design textbook (Nicolai8), 
but were in use in industry at least as early as the 1950s and probably before based on 
anecdotal information relayed to this author by design “old-timers”. 
 
In parametric optimization, the selected design parameters such as wing sweep or aspect 
ratio are varied about the baseline values as seen on the design layout. Estimates are 
made as to the impact of those variations on the design layout, either by actually having a 
designer redraw the aircraft for each variation or by applying some selected procedures 
for automated redesign. These attempt to determine the impacts of parametric design 
variations without a man-in-the-loop drawing revision. Then, the design is re-analyzed 
and re-sized, and all performance and cost estimates are recalculated. From this data, an 
optimum is found using methods ranging from a simple single-variable graph to the 
sophisticated MDO techniques described herein.  
 
Classical aircraft optimization usually employs the “carpet plot” technique to display the 
results of the parametric calculations and to solve for the optimum aircraft meeting all 
performance constraints, as shown in figure 3.  

                                                 
** Portions of this section excerpted and edited from Raymer, AIRCRAFT DESIGN: A Conceptual 

Approach, 199911. For permission to copy contact the author. 
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figure 3. Classical Optimization via Carpet Plot 

 
The carpet plot of figure 3 represents the commercial airliner sample design described in 
Section 6.1.2. The chosen parametric variables, thrust-to-weight ratio (T/W) and wing 
loading (W/S) are arbitrarily varied from the as-drawn baseline values by some 
percentage. Each combination of T/W and W/S produces a different airplane, with 
different aerodynamics, propulsion, and weights. These different airplanes are separately 
sized to determine the takeoff weight of each to perform the design mission. If cost is to 
be the measure of merit, it is calculated from the weight. The different airplanes are also 
individually analyzed for performance. If the T/W and W/S variations are wide enough, at 
least one of the aircraft will meet all performance requirements although it will probably 
be the heaviest airplane when sized to perform the mission.  
 
Graphical interpolation techniques (see Raymer11) are applied to produce the “carpet” 
lines, showing the effect on measure of merit for these parametric variations. Then the 
performance constraint lines are superimposed, showing what combinations of those 
design variables provide the required performance values. 
 
In the sample of figure 3 the original baseline design layout is at the middle of the 
crossing “carpet” lines, and exceeds all performance constraints as indicated by the 
various labeled diagonal lines. The “optimum” solution according to this plot is found at 
the lowest point (best MOM) where all requirements are met or exceeded, and typically 
occurs where two or more of them cross  (here at about 193,000 lbs {8,7543 kg}). 
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At the optimum point it is possible to move in a direction of lower aircraft weight (better 
measure of merit) only by violating the performance constraint lines. This epitomizes the 
definition of the Kuhn-Tucker Theorem as described below, which is used in the 
development and proof of MDO methods. 
 
This carpet plot technique directly allows only two parametric variables, but designers 
have long used crossplots of numerous carpet plots to optimize for four and more 
variables. It is common to use T/W and W/S as the main variables of an aircraft design 
optimization because collectively they have a large effect on sized takeoff gross weight 
and performance††. To add additional variables to the optimization, the classical 
optimization method selects additional variables such as wing Aspect Ratio and Sweep, 
and makes parametric variations of them. For each combination of those additional 
variables, a separate T/W - W/S carpet plot is created and used to find the optimal aircraft. 
Then, a carpet plot of the Aspect Ratio and Sweep variables is created in which every 
data point is a “best” combination of T/W and W/S.  
 
Needless to say, the workload becomes immense especially when 1960’s-era computers 
are used and the graphing is all done by hand. To optimize T/W, W/S, aspect ratio, taper 
ratio, sweep, and thickness (the basic set of six design parameters commonly used in 
aircraft conceptual design – see below, also see Raymer27) requires a minimum of 36, or 
729 data points (56, or 15,625 data points would improve accuracy). Each data point 
represents a different airplane and requires full analysis for aerodynamics, propulsion, 
weights, sizing, and performance.   
 
To better optimize an aircraft at the conceptual level, additional design parameters such 
as fuselage fineness ratio, wing design lift coefficient (or camber), and engine bypass 
ratio or propeller diameter could be included in a simultaneous optimization. One could 
attempt to simultaneously optimize all of these and many more, and also have the 
computer optimally change the actual shape of the design including wing planform 
breaks, nacelle locations, and tail locations, and perhaps optimize the airfoils and the 
APU installation at the same time.  
 
Such “everything-optimization” is neither feasible nor desirable. As to feasibility, the 
example above indicates how quickly the number of required data points (i.e., aircraft 
parametric evaluations) spirals out of control as additional design variables are added. 
Some MDO researchers label this the “curse of dimensionality”, and it leads to 
unacceptable execution times plus additional set up effort. 
 
Nor is “everything-optimization” desirable. After a certain point, excessive time spent on 
defining, executing, and understanding an optimization computer program is just time 
taken away from other pressing design tasks. Such optimization would probably stretch 
beyond the applicability or sensitivity of the chosen measure of merit, which after all is 

                                                 
†† Assuming a new engine will be developed for the design, thus allowing the designers full freedom to 
specify T/W. If an existing engine must be used, then the T/W will be defined by the available thrust and the 
sized aircraft weight and so cannot be used as a parametric design variable. In such cases the next-most-
critical design parameter, usually wing Aspect Ratio, is used in the Carpet Plot 
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just an assumed approximation for how the aircraft will actually be operated. Also, the 
analysis may be rather insensitive to some selected design variables producing ambiguous 
or misleading results. Finally, many of the design parameters that could be included are 
not very interdependent (“weakly-coupled”) and can be optimized separately.  
 
But, if design parameters are carefully selected and evaluated with considerations for the 
“real world” of aircraft design, a truly better aircraft can be found in a reasonable amount 
of computational time. Such multivariable/multidisciplinary optimization methods are the 
focus of this research, and selection of design variables is discussed in a section below. 
 

2.4 Historical Review of Engineering Optimization 

Optimization involves the pursuit of the “best” – or a significant “better”. Better what? A 
better value of some defined “measure of merit” or “objective function”. For aircraft 
conceptual design, the measure of merit is typically weight and/or cost for some specified 
capability, or capabilities such as range or payload at a specified weight or cost. This 
pursuit of better/best is limited by specified conditions involving real-world operational 
aspects or must-meet capabilities, which in mathematical terms are the “constraints” of 
the optimization. Fundamentally, we can define optimization as the determination of a 
minimum or maximum of one or more objective functions such that no constraints are 
violated. While equality constraints weigh heavily in other applications of optimization, 
in aircraft design optimization the constraints are almost always of the inequality sort – it 
is acceptable to be better than the required value, just don’t be worse! 
 
Optimization is nothing new – it is inherent in the laws of physics. A massive collection 
of particles, floating freely in space, will form a sphere that is the optimum shape for 
minimizing surface area for an enclosed volume. A ball rolling down a hill will 
automatically, under the direction of nothing more than the laws of gravity and motion, 
find the fastest way down from a given starting point. Pebbles will, over time, pack 
themselves into the smallest possible volume.  
 
Human efforts at optimization go back as far as humans have existed. Even a primitive 
man tries to find a better way to kill prey, gather foods, carry water, defend loved ones, 
and provide shelter from the elements. In fact, optimization by a-priori thought rather 
than instinct is a key factor that makes us human (although some animals look pretty 
thoughtful at times – like a dog trying to get to an out-of-reach bone!). 
 
Prior to the last few hundred years, optimization was largely by trial-and-error, with good 
results passed down as heuristic folklore. The great cathedrals of Europe were designed 
with every intent to minimize material (for cost) and column size and number (for 
aesthetics), but the only available tools were the study of prior successes and failures and 
the construction and test of portions of the design under consideration.  
 
In the world of shipbuilding, quite close to the world of aircraft design, the disaster of the 
Swedish warship Vasa is instructive concerning the problems of attempting to optimize 
with insufficient analytical tools to assess the design constraints. Vasa was ordered during 
a time of war (1625) as a single-deck warship with a keel length of 108 ft and a width and 
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ballast load suitable for such a length, based on prior experience. The customer - the king 
who was away fighting in Germany - sent an order to make the ship “more optimal” for 
its military purpose, namely by adding guns which required the ship to be longer (135 ft.) 
and to have an unplanned-for second gundeck and bigger sails.  
 
Since there were no technical means to calculate the stability or ballast requirements 
except by past experience, nobody could prove that it wouldn’t work (i.e., the stability 
constraint could not be calculated to determine an upper limit on the design variables 
“number of guns” and “number of gundecks”). So, they built it that way rather than incur 
the delay needed to start over with a broader hull and more ballast space. When the hull 
was floated and the guns installed, they performed the usual stability test in which 30 
men would run from side to side to see if the rolling motion would grow excessively. The 
Boatswain later said “If they had run across the ship one more time she would have 
capsized." Unfortunately, the king had sent clear instructions: "Vasa shall be ready by 
next (25 July), and if not, those responsible would be subject to His Majesty's disgrace." 
They finished it, launched it, and watched it roll over and sink in 100 ft of water28. 
 
Optimization by mathematical analysis became possible in the 1600’s when Isaac 
Newton and Gottfried Leibniz independently developed calculus. About the same time, 
Pierre de Fermat defined a general approach to compute local minimums and maximums 
of functions by solving for the derivative and setting it to zero – the basis of most 
analytical optimization today40. Fermat, along with Blaise Pascal, founded the theory of 
probability that is critical to Monte Carlo techniques and the recently developed 
evolutionary/genetic optimization algorithms. Interestingly enough, Fermat and Pascal 
became involved in probability theory when a gambler asked Pascal for advice as to how 
to best divide game winnings29 - and even today game theory provides a powerful 
optimization tool. 
 
In the 1700’s, Leonhard Euler developed methods to find the extreme values of functions, 
along with many other contributions to mathematics and physics including definition of a 
basic equation of hydrodynamics still used in computational aerodynamics. Joseph 
Lagrange, together with Euler, developed the calculus of variations. This remains highly 
useful in optimizing real-world problems such as those that are time-dependent. Lagrange 
also developed generalized equations of motion and developed the concept of partial 
differential equations, two of the foundations of engineering dynamic analysis.  
 
In the early 1800’s, Adrien-Marie Legendre and Carl Friedrich Gauss developed the 
method of least-squares curve fit that is often used in optimization, especially the modern 
Response Surface method. Later Pierre Laplace developed a formal proof of the least-
squares method, on which the estimation of curve fit errors is based. In the mid-1800’s, 
William Hamilton developed theorems concerning differential equations, dynamic 
analysis, and imaginary numbers which have great application for the solution of 
optimum design problems.  
 
Andrei Markov in the early 1900’s developed the theory of stochastic processes and 
pioneered the study of what became known as Markov Chains. These are sequences of 
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random variables in which the future value of the variable is determined by the present 
value but is independent of the way in which the present value was derived from its 
predecessors. In other words, a Markov Chain has no history and no after-effects30, which 
is typically true of iterative optimization processes. 
 
Vilfredo Pareto, an economist in the early 1900’s, developed the principle of 
multiobjective optimization for use in allocation of economic resources. His concepts 
became known as "Pareto optimality", defined as a situation in which you cannot make 
someone better off without making someone else worse off. A graphical representation of 
Pareto optimality is widely used to depict two-objective optimality. An aircraft design 
example might be a requirements trade study in which you attempt to maximize both 
range and payload weight, and plot a curve showing the optimum tradeoff between the 
two (figure 4). 
 

     
figure 4. Pareto Graph: Range-Payload Optimality 

 
In 1947 George Dantzig developed the Simplex Method to optimize problems involving 
scheduling of training, supply and deployment of personnel for the U.S. Air Force. In the 
military terminology of the day such planning was known as “programming”, and since 
the equations were linearized, this became known as "Linear Programming" (not to be 
confused with computer programming, which didn’t exist at that time). A key aspect of 
linear programming is its ability to deal with constraint functions independent of the 
objective function. Linear programming has become widespread in its usage, especially 
for business decision making. 
 
The Kuhn-Tucker Theorem (Albert Tucker and Harold Kuhn) of 1950 is considered to 
have launched the modern field of nonlinear programming (although it was apparently 
defined twice previously, by William Karush in 1939 and by Fritz John in 1948). Kuhn-
Tucker gives necessary and sufficient conditions for the existence of an optimal solution 
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to a nonlinear objective in the face of constraints. Fundamentally it says that at the 
optimum, the only direction you can move to improve the objective function is one that 
will violate one or more constraints. Kuhn-Tucker is widely used in the proofs of 
analytical optimization methods. As described above, the classic aircraft design carpet 
plot is actually an excellent illustration of Kuhn-Tucker (see figure 3).  
 

2.5 Overview of Multidisciplinary Optimization (MDO) 

Multidisciplinary Optimization, or MDO, can be described as a collection of 
mathematical techniques for multivariable optimization in which the optimization clearly 
crosses disciplinary boundaries. An essential feature of MDO is the presence of design 
constraints and measures of merit which are of system-level concern. In a typical aircraft 
conceptual design application, the measure of merit (MOM) is either cost or its surrogate, 
weight, where the aircraft is sized‡‡ to some specified mission which includes the range 
and payload requirements. The design constraints are typically the aircraft’s required 
performance values such as takeoff distance and climb rates, plus any geometric or 
operational constraints such as a wingspan limit.  
 
MDO grew out of prior multivariable optimization methods as a natural consequence of 
the attempt to apply optimization to more system-level problems. To the cynic, MDO is 
just the new “buzzword” for multivariable optimization, but MDO should be recognized 
rather as a distinct system-level subset of multivariable optimization. Furthermore, the 
fairly recent application of MDO as a serious topic for research has led to the 
development of new and distinct optimization methods due precisely to that system-level 
focus. 
 
A typical application for MDO in the aircraft design field is the simultaneous 
aerodynamic and structural optimization of a wing. The wing is defined in terms of some 
geometric variables, and the effects on aerodynamics and structural strength are 
determined as the geometry is varied. Results are assessed versus some defined measure 
of merit, and in the presence of constraints which can be based on performance, safety, 
operability, or practicality. Other applications of MDO in aerospace include such diverse 
areas such as launch vehicle geometric design, composite materials design, coupled wing-
body integrated analysis, advanced structural weights estimation, and aerothermal and 
sizing optimizations31,32,33. Organizations such as Boeing’s Phantom Works are using 
MDO techniques in aircraft conceptual design on a fairly routine basis, and report great 
success at quickly “weeding through” numerous design alternatives34. 
 

                                                 
‡‡ “Sizing” is a mathematical iterative process which determines the aircraft takeoff gross weight, empty 
weight, and fuel weight required such that a given aircraft concept layout can perform a specified mission 
(range) at a specified payload weight.  This calculated size is used to redraw the aircraft with a revised wing 
area, fuselage length, etc…, appropriate to the determined weight. Note that range is a given (independent 
variable) whereas aircraft weight (thus aircraft physical size) is the calculated, dependent variable. For a 
detailed description see Raymer11 chapter three. 
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A wide variety of approaches are being used for defining and solving multidisciplinary 
optimization problems including the following, described below: 
 

• Finite Difference 

• Implicit Function Theorem  

• Stepping Search Methods* 

• Response Surface 

• Monte Carlo* 

• Random Walk and Simulated Annealing 

• Evolutionary Algorithms and Evolution Strategy* 

• Genetic Algorithms* 

• Decomposition 
(* used in this research) 

 
In figure 5 the contours of the measure of merit of a two-variable design optimization 
problem are shown to illustrate the various optimization methods in the following 
sections. The sought-after global optimum point is indicated by a star.  

 
figure 5. Contours of MOM vs. Design Variables 

 
Constraints are not shown in this figure, but would indicate infeasible regions in the 
design space. In most aircraft optimization problems, the best usable answer is not the 
unconstrained global best. Instead it is usually the point closest to the global best on one 
or more constraint boundaries, where one can get no closer without violating a constraint 
(as defined by the Kuhn-Tucker Theorem mentioned above). 

2.5.1 Finite Difference 

A widely used technique for multivariable or multidisciplinary optimization uses a Finite 

Difference approach. Small parametric changes are made to the system (aircraft) one at a 
time, and the change in the measure of merit is used to define a slope (first derivative) 
which represents the system response (sensitivity) to a change in that variable. These 
derivatives are then used to predict the optimum solution, and iteration is used to drive 
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out the obvious linearization errors. Finite Difference methods were successfully used in 
conceptual design optimization of a new business jet as reported by Gallman et al.35  
 
Some have reported that the calculation of the finite differences can be computationally 
expensive and may produce inaccurate gradient approximations (Newman, et al36). For 
each step of the iteration, the number of system analyses required is at least one more 
than the number of design variables. Also, the difference between the “real world” and 
the linear assumption of the method requires that the solution found for each iteration be 
kept fairly close to the values of the parameters used in determining the slopes, which 
increases the number of steps required and introduces error. 

2.5.2 Implicit Function Theorem 

The Implicit Function Theorem differentiates the various governing equations to obtain 
sensitivity equations. These are used to set up simultaneous linear algebraic equations, 
which are then solved for derivatives of the objective function as the design variables are 
changed. These are used to find a solution.  
 
Unfortunately, the governing equations of a real aircraft design problem are both 
complicated and design-specific. In the real world, design analysis is limited by such 
factors as stall margin, service ceiling, max-continuous throttle setting, FAR/JAR-
restricted climb profiles, and peculiarities of the selected engine's thrust and SFC curves. 
These do not lend themselves to an equational representation, especially considering that 
there are often discontinuities in the derivatives of the real-world data. 

2.5.3 Stepping Searches 

There are a variety of methods that can be labeled Stepping Searches, in which the 
objective function is evaluated and a decision is made as to what direction to move to 
find a better value of the objective function without violating any constraints. This 
direction of maximum local improvement to the objective function can be found using 
derivatives of governing equations or finite difference methods based on actual 
calculations of the measure of merit, and is called the direction of Steepest Descent. After 
determining the best direction to move, a “step” of some defined distance is made in that 
direction to a point which becomes the origin for the next calculation and step. This is 
shown in figure 6, starting from the point labeled (1). 
 
Steepest descent is computationally intensive especially when constraints are used. The 
“best” direction must be found in a direction that doesn’t violate the constraints, requiring 
a large number of evaluations. 
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figure 6. Stepping Search 

 
Stepping searches are prone to finding a local optimum rather than the global “best”, 
depending on the location of the starting point. This can be seen in figure 6, starting at the 
point labeled (2). One way to avoid this is called Multi-start, in which the optimization is 
rerun a number of times from different starting points. 
 
Stepping searches are frequently employed due to their robust and deterministic nature. 
Herbst and Ross37 used a stepping search routine coupled to a computerized sizing code 
for early design optimization of the F-15. For other examples see Schick et al.38 or 
Crawford et al.39.  

2.5.4 Response Surface 

The Encyclopedia of Optimization states that “the evaluation or approximation of 

derivatives is a central part of most nonlinear optimization calculations”
40

. This is 
typically in many MDO methods including the Finite Difference method and the Implicit 
Function Theorem described above. Unfortunately, there is a critical problem with such 
methods – the presence of numerical noise, which results in incorrect gradients and can 
delay or prevent convergence41.  
 
In the following methods, such derivatives are avoided by optimizing directly from 
evaluations of the objective function (measure of merit). These methods are called zero

th
-

order or non-gradient methods, and proceed by calculating specific values of the MOM 
at various combinations of the design variables. Non-gradient methods are described in 
detail in Hajela42. The research described herein is exclusively restricted to such methods 
for the reasons described in the Introduction. 
 
In the widely-used Response Surface method (“RS”), the design variables are repeatedly 
changed to create a number of different designs, using either a simple parametric scheme 
or employing Design of Experiments to determine the best combination of variables for 
optimization purposes41. The resulting system (i.e., aircraft) variations are analyzed as to 
measure of merit and performance constraints. This creates a database of specific 
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combinations of the variables and the resulting measures of merit and performance 
values. Sample calculated MOM data are illustrated in figure 7 using evenly spaced 
parametric combinations of the variables.   
 

 
 

figure 7. Parametrically-created Measure of Merit Data Points 

 
This parametrically produced data is then fit by least-squares methods to an 
approximating multidimensional surface equation, the Response Surface (figure 8). This 
is mathematically or numerically solved for an optimum, shown in the figure as a circle. 
Performance constraints are used as limitations on the allowable solution space. Note that 
the optimum on the response surface may not exactly match the optimum in the real 
objective function (figure 5) – but it should be close, and the “hill” is flat at the optimum 
so the result should have almost exactly the same value of the measure of merit. 
 

       
 

figure 8. Response Surface Fit to Data Points 
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Response Surface is one of the leading MDO methods, and has the advantage of 
bounding the number of alternative values of each variable that must be made to find an 
optimum. Essentially, a response surface can be created from any selected number of 
parametric variations, and the only question is this – how well does the surface represent 
the reality? Here, the number of calculations is traded against the validity of the result. If, 
by chance, the “true” optimum is located between and away from any of the points 
calculated, then the value obtained from the response surface may not be very close to the 
true result.  
 
There is also the problem of “goodness of fit”. The response surface is just a curve fit – it 
may fit well at the given data points, but poorly match the actual results between those 
points. Typically, a response surface is a multidimensional polynomial of only second 
degree, because higher degrees increase the computational workload and increase the 
chance of obtaining a non-real, “wiggly” fit. However, use of a second-degree 
polynomial prevents proper fit to a reflexed region of the design space such as shown in 
the curve closest to the Variable 2 axis in figure 8. 
 
But, these problems are not severe and many researchers and industry designers report 
excellent results with Response Surfaces (Mavris and DeLaurentis43, Cassidy34). In 
addition to the large reduction in the number of full design evaluations that must be 
calculated, RS has a further advantage of naturally smoothing out numerical noise 
resulting from the parametric analysis. Sevant et al44 employed Response Surfaces to 
optimize flying wing designs primarily due to this noise-smoothing characteristic. Also, 
once the RS is fit it is quite easy to develop numerous design tradeoff graphs45. 
 
Another benefit of the Response Surface method is that the design points are selected and 
evaluated external to, and prior to the optimization. This makes it possible to select 
design points and have real engineers working offline do the design and analysis work to 
calculate the system-level response to changes in the design variables. In one company 
they go so far as to have designers prepare initial layouts of dozens of different aircraft 
concepts spanning the range of parametric design variables. These are then analyzed, fit 
to a response surface, and an optimum is determined34.  

2.5.5 Orthogonal Steepest Descent (Non-Gradient Stepping Search) 

A mathematically simple method labeled Orthogonal Steepest Descent (“OSD”) uses a 
full-factorial stepping searching method.  It is similar to the Steepest Descent search 
described above, but uses neither derivatives nor finite differences to find the direction of 
maximum local improvement to the objective function. Instead, the region around the 
current best is investigated only along the variables’ axes, and a step of pre-determined 
size is made in the best direction found (which is probably not the best direction there 
could be, but a few more step iterations will reach the “mountain top”). This is shown in 
figure 9, starting from the point labeled (1) and proceeding to the region of the optimum.  
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figure 9. Orthogonal Steepest Descent Full-Factorial Stepping Search 

 
Each variable is parametrically varied by the selected step size (plus and minus), and the 
resulting aircraft are all analyzed. The aircraft having the lowest value of the selected 
measure of merit that also meets all performance requirements becomes the center point 
baseline for the next iteration loop. This continues until no better variant is found, then 
the stepping distance is shortened and the process repeated until some desired level of 
resolution is obtained6. No derivatives or finite differences are required because no 
attempt is made to find exactly the best “direction” to move – motion is always along the 
orthogonal axes of one or more variables. 
 
Because it is robust and deterministic, always finding the same optimum, this method is 
employed as a baseline technique in the research herein. OSD requires a large number of 
steps and a large number of calculations for each step, implying a lengthy calculation 
time. The amount of calculation goes up by at least 3n, where n represents the number of 
design variables making OSD a poor choice for optimization of dozens or hundreds of 
variables. Also, by its nature OSD may find a “local” optimum as shown in the starting 
point labeled (2). This allows the possibility of an unfound better solution on a “different 
mountain”. This method is further described in Section 4. 

2.5.6 Monte Carlo 

In the stochastic Monte Carlo method, a random probability function is used to generate a 
huge number of potential designs, and all candidates are defined, analyzed, and compare 
to the other designs to find the “best” design. This is defined as the design that meets all 
performance constraints and has the best value of the selected measure of merit. There is 
no proof that the “best” design found is the best that could exist, or that it is even close to 
the possible global optimum. However, since the Monte Carlo method is randomly 
examining the entire design space, it is unlikely that it will return a local optimum only, 
and if the found best design is substantially better than the design obtained without 
optimization then the method has served a useful purpose. This method is also used in the 
research described herein. 
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2.5.7 Random Walk 

A stochastic stepping method called Random Walk applies a probability function to 
define a random direction away from the current design variable. If it leads to a better 
design, a step is made in that direction and the process is repeated. This resembles the 
steepest descent search of figure 6 but rather than step in the best direction found, a step 
is made in the first randomly-chosen direction that offers an improved value of the 
measure of merit. This is also called Drunkard’s Walk, for obvious reasons as can be seen 
in figure 10. Note that this too is prone to getting stuck on a local optimum. 
 

 
figure 10. Random Walk 

2.5.8 Simulated Annealing 

In Simulated Annealing, the tendency of Random Walk to get trapped in a local optimum 
is avoided by adding randomness to the acceptance of a “better direction”. Early in the 
optimization, a probability function is applied such that some times, a step direction is 
accepted that actually leads to a worse value of the objective function. This probability is 
reduced as the optimization progresses so that, by the end of the optimization run, only 
“good” directions are accepted. To further ensure that the result is not a local optimum, 
the process can be restarted from this supposed optimum, with a high acceptance of 
worse values of the objective function reintroduced, then later driven out again46.  
 
Simulated Annealing is said to be analogous to the annealing of metals in which the 
temperature during cooling is sometimes increased then reduced again, to allow 
crystalline structures to settle into their lowest energy state prior to final solidification. 
Simulated Annealing was used by Pant and Fielding47 to simultaneously optimize aircraft 
configuration and flight profile of a commuter/regional transport. The algorithm used 
employs random step directions with step size adjusted to keep the number of accepted 
configurations about the same as the number rejected.  
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2.5.9 Evolutionary Algorithm 

An Evolutionary Algorithm works by applying a heuristic process of survival of the fittest 
to a defined population of potential solutions (i.e., aircraft). While Darwin is not normally 
associated with aircraft design, the modeling of aircraft characteristics as genes of design 
variables shows much promise. The design variables are coded into (usually) binary 
strings such that a collection of 1s and 0s defines a particular aircraft by its design 
variables (Crossley48, Raymer and Crossley 49).  
 
Rather than starting with a single baseline design and trying to improve upon it, an 
evolutionary algorithm starts with a number of binary strings composed of random 1s and 
0s defining some initial population of designs (figure 11). The measure of merit is 
evaluated for each of these designs. The optimum design is improved through a process 
involving selection and successive generations of alternative aircraft individuals as 
defined by the designs’ bit-strings. 
 

 
 

figure 11. Random Initial Population Generated from Design Variables 

 
One of the earliest applications of an evolutionary algorithm was a demonstration using a 
simple hinged model, a wind tunnel, and a set of dice. Ingo Rechenberg and Hans 
Schwefel50, students at Technische Universität Berlin, put the model in the tunnel and 
started with the non-aerodynamic shape shown at the top of figure 12. Then they threw 
the dice, and used the random results to adjust the angles between the different hinged 
segments. The better of different new “individuals” were kept as the “parents” of the next 
generation. Results from the first three generations are shown, and a slight progression 
towards a better shape can already be seen. After 200 generations, the obvious minimum 
drag result – a straight board – was obtained (almost). Rechenberg calls this the Evolution 

Strategy (Evolutionstrategie).  
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figure 12. Aerodynamic Optimization via Evolutionary Strategy
51

  

 
A similar method called Evolutionary Programming does not attempt to “mate” parents 
of one population to create the next generation. Instead, the next generation is created by 
mutation applied to the most-fit of the previous generation. A variation of this method is 
employed in this research. 

2.5.10 Genetic Algorithm 

Another promising type of evolutionary algorithm is the Genetic Algorithm (GA). 
Members of a randomly generated starting population of aircraft are analyzed and 
evaluated as to fitness, based on the measure of merit, and the most fit are most likely to 
be permitted to reproduce. Aircraft variants are defined parametrically by the values of a 
chromosome-like genetic bit-string. Reproduction occurs by “crossing” their genes with 
those from another selected “parent”. The next generation is evaluated as to fitness, and 
the process continues until the population all resemble each other or the measure of merit 
is no longer improving. This is presumed to represent an optimum.  
 
The concept of a Genetic Algorithm is attributed to J. Holland in the early 1960’s as 
described in his landmark book52, and has been extensively explored for a variety of 
optimization problems.  GA falls into the class of stochastic global optimization methods, 
and by its nature is not prone to falling into a local optimum. This makes it desirable for 
classes of problems with non-simple objective function shapes, and/or with complicated 
constraint functions. It is also useful for classes of problems with a large number of 
design variables, where traditional optimizers may simply be incapable of finding any 
usable solution. 
 
An advantage of Genetic and Evolutionary Algorithms is their ability to incorporate non-
continuous (discrete, or integer) variables such as number of engines in an optimization 
with continuous variables such as wing sweep. This is difficult to do with derivative-base 
optimization methods and generally has to be “faked” by what amounts to duplicate 
optimizations, one for each potential value of every discrete variable. 
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Genetic Algorithms have been applied to aircraft, rotorcraft, and spacecraft design by a 
number of researchers including Blasi et al.53, Perez54 et al., Roth et al.55, Crossley48, and 
Mosher61. A Genetic Algorithm has been applied to better predict the control inputs that 
may cause departure on the X-31 Post-Stall Maneuver aircraft56. GA has even been 
applied to assist in identification of weakly coupled submodules for a decomposition 
optimization57. 
 
Key concepts of the Genetic Algorithm include Selection, Crossover, and Mutation. 
Selection (to breed) can be done in many ways, but is always based on a calculated fitness 
measure that is related to the optimization objective function (measure of merit) and the 
constraint functions. One simple criterion would be, select the individuals with better 
values of the measure of merit  (such as lower sized takeoff weight) provided that they 
meet all performance requirements. As this effectively “kills” all non-performing 
individuals, it may be too restrictive in that some individuals may have “good genes” 
otherwise, but those genes are lost because those individuals miss one performance value 
by some small amount.  
 
Another selection criterion could be the calculated value of the measure of merit, post-
multiplied by a factor based on violation of the performance constraints. So, the almost-
good-enough individuals can still be picked for breeding. Selection of which individuals 
are allowed to breed can be based on a global stacking of all individuals or on a one-vs.-
one tournament in which individuals are randomly paired to “fight it out”, with the 
winner being allowed to breed with another winner.  
 
A widely-used strategy, the “Roulette Wheel”, assigns a likelihood of being selected 
based on the fitness measure then applies a random number generator to determine which 
individuals are actually picked. This is much like spinning a roulette wheel wherein the 
sizes of the “pie slices” are based on fitness.  
 
Crossover refers to the actual “mating”, the creation of a new individual in the next 
generation from (usually) two selected individuals. It too can be done in many ways. 
Single-point Crossover is done by bisecting the chromosome strings of the two parents 
into two parts at some (usually random) location. The first half of one parent’s 
chromosome string is pasted to the second half of the other parent’s chromosome string. 
Often, two children are created in this manner from each selected pair of parents by using 
the leftover halves for the second child58.  
 
Another scheme, Uniform Crossover, combines the genes bit-by-bit. Each bit is inspected 
for both parents – if they are the same, the child has that value (0 or 1). If they are 
different, a value is randomly selected. Another option is to treat the genes defining a 
particular characteristic, such as wing sweep, as a unit, and randomly pick them from one 
parent or the other. 
 
Some researchers suggest using a weighted crossover scheme wherein a more-fit parent 
contributes a greater percentage of the genetic information of the child61.  
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Mutation involves taking the chromosome strings of the children (i.e., the next 
generation) and generating a random number for each bit. If a defined low-probability 
result is obtained, the bit in question is “flipped” to the opposing value. This has the 
effect of creating new information in the population and serves to avoid premature or 
local convergence, but also interferes with the convergence to a certain extent. For 
example, the GA may have finally produced the ideal airplane only to have it lost when 
the random mutation operator changes a key design parameter.  
 
An important formal analytical result with implications for the utility of the Genetic 
Algorithm is the Schema Theorem

52  (also called the Fundamental Theorem of Genetic 

Algorithms). This concerns the overall patterns in the chromosome string itself. Such 
patterns define “good” values of related design variables as the algorithm proceeds 
through many generations, and it is important that good patterns, or schemata, are not 
lost. Convergence finally occurs because the best schemata eventually dominate the 
population. The Schema Theorem is a mathematical expression of the number of 
schemata that will exist in the next generation based on the number in the current 
generation, the population size, fitness, crossover probability, mutation probability, 
length of the chromosome string, and length and order of the various schemata.  
 
The Schema Theorem has several implications of special concern. When using a 
bisecting crossover operator, the position on the chromosome string of the various design 
variables becomes important. For example, it is well known that three-engine airliners are 
optimized with a lower thrust-to-weight ratio (T/W) than two-engine airliners because the 
effect of losing one engine is less catastrophic. A chromosome string with T/W right next 
to number of engines will likely preserve a good schemata involving them both, whereas 
if T/W is far from the number of engines an emerging good schemata will likely be lost 
during crossover. Other examples are less obvious. It is unlikely that those developing an 
optimization code will be able to anticipate every instance where the definition of the bit-
string itself will affect the quality of the optimization result. 
 
Also, long schemata are more likely to be disrupted than shorter ones by crossover. This 
may prevent the full development of multi-variable optimum schemata such as, “this 
wing loading plus this sweep plus this aspect ratio plus this taper ratio equals a good 
airplane.” 
 
In GA routines, there is a dichotomy between good “exploitation” of available schemata 
and good “exploration” of the design space. Single-point crossover “exploits” the good 
schemata of designs that are selected to reproduce, keeping approximately half of their 
schemata intact depending upon where the crossover occurs. Uniform crossover 
“explores” the design space by blending the schemata of the two selected designs. This 
often disrupts existing schemata, but introduces new schemata not present in either 
parent.  
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Probably because of these implications, many researchers believe that Uniform Crossover 
is preferable to a bisection crossover. However, Uniform Crossover itself tends to break 
up schemata by the random selection of a bit where the parents have different bit values. 
 
Another implication of the Schema Theorem is that excess mutation can continuously 
destroy emerging schemata, causing the Genetic Algorithm to become more like a 
random, Monte Carlo optimizer. This affects both uniform and bisection-type crossovers. 
 
Guidelines for mutation rate per bit suggest that for single-point crossover, the probability 
of mutation per bit should be between (1/N) and (1/NL), where N is the population size 
and L is the length of the chromosome bit-string. For uniform crossover, empirical 
evidence59,60 indicates that a reasonable mutation rate equals ((1+L)/2NL). 
 
The size of the population is important in the Genetic Algorithm method. If too large, the 
computational time is excessive and the number of generations may be limited. If 
population size is too small there may be insufficient “genetic information” in the initial 
population, or the random recombinations of genetic information may cause useful 
information to be lost. Crossley59 suggests a population size of 30 or more if the 
chromosome string is less than 30 bits long, and if more than 50 bits long, the population 
should greater than 100. Mosher61 suggests a population size four times as large as the 
number of bits in the chromosome bit-string. Values derived by Goldberg62 suggest an 
optimal population size equal to (1.65) 20.21L. 
 
As the Genetic Algorithm, like Monte Carlo, relies heavily on random probability factors 
and is hence not deterministic, there is little assurance of getting a repeatable result or 
knowing that the “optimum” discovered is actually the very best possible result. There is 
not even a mathematical proof of solution convergence in a Genetic Algorithm – but they 
do work, and often work well! 
 
There are many variations on this basic GA scheme including the manner in which 
designs are selected for reproduction, the manner in which their genes are combined to 
produce the next generation, and the use of options such as mutation, replacement, and 
elitism, as discussed below. It has been said that there are as many Genetic Algorithms as 
there are researchers developing them. Many of these GA variations have been coded and 
evaluated in the research described herein. 

2.5.11 Decomposition 

Decomposition works by partitioning a large engineering design optimization problem 
into a number of smaller, solvable problems (sub-modules). During execution of the 
optimizer, top-level routines pass data between the submodules in a structured manner 
that retains their coupling and accommodates the defined system constraints (figure 13). 
For example, a wing analysis decomposition may have an aerodynamics module that 
knows how to calculate drag and airloads if it knows the wing shape, and a structures 
module that knows how to calculate weight and structural deflections if it knows the 
airloads. Each executes separately, passing their results to the other until they converge at 
an optimum for the measure of merit such as weight or drag, or a blended bit of both. 
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Decomposition should really be understood as a framework for MDO problem 
simplification, and once accomplished, the decomposed sub-problems are solved using 
one of the other optimization techniques. 
 

 
 

figure 13. Optimization by Decomposition  

 
The key to successful application of decomposition is to separate the design variables, 
constraints, and/or analysis methods into groups that are only weakly interconnected. 
Then we can perform separate optimizations within these groups, coordinated and linked 
such that the entire system is optimized when the separate optimizations are brought 
together. The groups may also be broken into weakly-interconnected subgroups, creating 
a tree-like structure to the optimization process with a top level that is the entire system, 
and sub-levels below it representing groups and subgroups.  
 
In textbooks, decomposition it often illustrated using connected structural members such 
as a door frame46. This is readily and obviously decomposed into the separate beams 
comprising the door frame. Applying such techniques to the problem of aircraft 
conceptual design optimization remains difficult, as there are not such obvious, weakly 
interconnected groupings to decompose. Sobieski63 has developed an analytical method 
for assessing a multidisciplinary system and determining its sensitivity to its design 
variables. This method, called Concurrent Subspace Optimization, uses global sensitivity 
equations as a way to decompose an optimization problem analytically rather than by 
inspection and intuition.  
 
Significant research continues into the use of decomposition for aircraft design problems, 
and successful industry utilization has been reported (for example see Hollowell et al.64, 
Batill et al.65 or Isikveren66). 
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2.5.12 Stopping Criteria 

An important aspect of any optimization method is deciding when to stop. Poorly defined 
stopping criteria can cause the execution to run on far longer than required, or can stop 
execution before a better result can be found. Typical stopping rules include: 
 

• Fixed number of iterations or populations 

• Fixed amount of execution time/cost 

• Objective function unchanged for specified number of generations 

• Small percent improvement in objective function over last value 

• Similarity in design variables (genes) 

• Percent coverage of the possible design space 
 

2.6  The MDO Realism Problem – Automating Aircraft Redesign 

Multidisciplinary Optimization promises to help develop a significantly better aircraft. 
However, the optimized best design must be turned from a computer-generated collection 
of design parameters into a real design layout, either on a drafting table or more likely, on 
a CAD system. It is quite possible that when a real aircraft designer tries to turn 
optimized parameters into a buildable layout, unforeseen problems will arise. The fuel 
and landing gear may not actually fit, forcing a stretch in the fuselage. This would 
increase drag, Or, the center of gravity may have moved enough that the wing has to be 
moved to compensate, forcing redesign of everything from landing gear location to 
control surface sizes. Perhaps the computer–defined longer nose interferes with pilot 
overnose vision, or any of a hundred other real-world design requirements may have been 
violated. 
 
Somehow, the initial baseline design must be automatically modified for each parametric 
variation in a realistic manner so that the final selected “best” aircraft as modeled in the 
optimizer is very similar to the design that will emerge on an actual, post-optimization 
design layout. If this is poorly done, the designer will have to make substantial changes to 
the design as optimized by the computer. These changes will in turn change the aircraft’s 
aerodynamics, weights, and other analysis results, producing an aircraft different from 
and probably worse than the design promised by the optimizer.  
 
As a simple example, consider the optimization of wing loading (W/S) to maximize the 
range of a propeller-powered aircraft. This can be analytically determined as: 
 

K
C

q
S

W
DO

Optimum

=







 

 
where q is the dynamic pressure, CD0 is the parasitic drag coefficient, and K is the drag-
due-to-lift factor. Clearly, if the designer must increase the fuselage size after the 
optimum W/S is determined, the parasitic drag will increase and the best W/S will be 
higher than that predicted by this simple optimization method. This may well happen if 
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the “optimum” wing loading as found with this equation is much higher than assumed for 
the first design layout. A higher wing loading corresponds to a smaller wing, which may 
not hold the required amount of fuel – thus a bigger fuselage would be required. 
 
Definition of automated redesign procedures for use within an optimization routine is 
therefore important for obtaining usable results. To continue our example, if an MDO 
optimization includes wing loading as one of the variables, we must parametrically vary 
the wing loading and calculate the effects upon the aerodynamics, structure and weights, 
stability, control, and any other functional disciplines that may be affected by the change.  
 
One effect is obvious - the wing gets bigger or smaller. Others are subtler. As the wing 
area changes, its proportion of wetted to reference area changes. Its area and thickness 
change so it can hold more or less fuel, and if the landing gear is located in the wing the 
tires may no longer fit.  As a result, a change in wing loading will often require a change 
in fuselage size. When this is done, the landing gear geometry may no longer work, 
requiring further geometric changes to the fuselage and/or wing. The tails, which must be 
resized to accommodate a larger or smaller wing, must also adjust in size depending on 
the resulting tail moment arm. A change in wing size could even impact the inlet duct 
length or external flow field causing a change in thrust and fuel consumption. 
 
Altogether, a simple parametric change in wing loading may flow down to a large 
number of changes to the aircraft's representation in the input data for analysis, cutting 
across many of the functional disciplines incorporated in the MDO. These may in turn 
have an impact on the chosen measure of merit, or upon design constraints such as 
performance requirements or cost targets. 
 
Routines for each of these can be postulated and included in an MDO code. This has been 
done in some cases, and the old optimization codes of the major aircraft companies had 
many such real-world effects included12. These programs had computer routines that 
would change the representation of the aircraft design as a result of changes in the design 
variables, in a fashion intended to represent what a human designer would do. However, 
they tended to be very design-specific and had a long set up time (weeks) and needed 
expert users to obtain good results.  
 
At present, it appears that MDO methodology development is running ahead of our 
ability to implement reasonable automated aircraft redesign within those codes. 
Automated procedures are needed that will redesign the concept in response to changes in 
parametric variables much as an actual designer would do. These procedures must have 
minimal set up and not require an expert’s attention for every design being studied. 
Furthermore, it is important that only those areas that substantially influence the output of 
an optimization be included, to avoid excessive workload. 
 
An attempt is made in this research to postulate and assess a suite of credible automated 
aircraft redesign procedures, as described in Section 5. 
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2.7  Observations Concerning Variables, Constraints, & MOMs  

When crafting an MDO program or routine, the developers must select the design 
variables, measure of merit, and design constraints. The design variables are terms that 
represent physical features of the design that will be parametrically varied in some 
fashion to find an “ideal” set of features. Design variables can be smoothly changeable 
over a continuous spectrum, such as wing area, or can be discrete variables that have only 
integer values such as number of engines or number of aisles and seats across.  
 
Selection of design variables completely drives the result, to a greater extent even than 
the optimization method employed. As an obvious example, failure to include the 
possibility of variation in the wing loading of an aircraft will make it very doubtful that 
the true optimal aircraft will be found. The full range of design variables is often called 
the "Design Space". It could include tens of thousands of design variables defining 
everything about the aircraft, but wise designers carefully select the most-relevant suite of 
design variables depending upon where they are in the design process. 
 
Design constraints are aircraft properties that must be attained for design acceptability. 
Normally these are performance constraints such as takeoff distance, rate of climb, or 
cruise speed. Sometimes design constraints include cutoff values for physical features 
such as wingspan (can't be greater than existing commercial taxiways or military 
hardened shelters) or fuselage diameter (can't be less than minimum passenger or cargo 
envelope plus structural allowances). Design constraints can also include environmental 
restrictions such as noise propagation or creation of ozone-depleting chemicals.  
 
If the chosen suite of design constraints is incomplete, incorrect, or poorly analyzed, the 
apparent best aircraft may not be usable, or a better aircraft may be missed. For example, 
if a "quick and dirty" takeoff calculation is used in an optimization, the "constraint line" 
in the solution space may be to the "left" or "right" of reality, causing the selection of 
either a design that doesn't actually meet the required takeoff distance, or a design that 
exceeds the required value and thus is heavier or more expensive than optimal (in either 
case, the design is actually "suboptimal" in the chosen measure of merit). 
 
A measure of merit (MOM) is desired capability that the vehicle will be optimized to 
attain. In mathematical terms, the measure of merit is the objective function for the 
optimization. Typically the MOM is based on cost or weight if the vehicle is being sized 
to a required mission, or on range if the aircraft is being designed to a pre-determined 
weight, engine, or physical size.  
 
A compound measure of merit can be created, blending several calculated measures of 
merit via some weighting scheme. For example, the true measure of merit may be ton-
miles of cargo delivered at constant cost, but there may also be an intuitive "goodness" 
associated with a smaller aircraft. To bias the optimization away from extreme-size 
solutions, the calculated ton-miles cargo delivered may be reduced by some factor times 
the calculated aircraft empty weight. Alternatively, the MOM blending could occur by 
summing ton-miles and empty weight, with one of them multiplied by a factor equating 
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them for an “apples-to-oranges” comparison. This can be useful, but the selection of the 
mysterious factor will completely drive the resulting design solution. Alternatively, the 
graphical methods of Pareto29 (figure 4) can be applied to two diverse measures of merit, 
showing the reduction in one to obtain an improvement in the other. 
 
Selection of the measure of merit is critical to the determination of an optimal design. If a 
design is optimized to the wrong measure of merit, say minimum weight, it will not be 
the best aircraft if another measure, say fuel, is actually more important. The aircraft 
should be optimized to the measure of merit that provides greatest value to the intended 
customer and results in the largest number of sales. Sometimes this is difficult to 
determine. 
 
Another complexity to this discussion: some of the "design-to" performance requirements 
such as range, payload, or cruise speed may not actually be included in the constraint 
calculations. Instead, they may be embedded in the calculation of the measure of merit. 
The aircraft is usually sized to a required range carrying a required payload, and those 
values are used in the equations that generate the sized takeoff weight (and most other 
MOM's). Therefore, we do not need to include those parameters again in a constraint 
calculation even though they are clearly design constraints.  
 
An important consideration in selection of criteria for all of these is that it is sometimes 
difficult to recognize just what is a design variable, what is a constraint, and what is a 
measure of merit. For example, some may consider takeoff speed or aircraft turn rate to 
be design variables and may perform design trade studies to attempt to optimize them. In 
this author's opinion, those should more properly be considered design constraints, and 
treated accordingly in the MDO methodology. An attempt is made below to provide 
precise definitions to avoid such confusion. 
 
Following are recommended selection criteria for Design Variables, Design Constraints, 
and Measures of Merit based on this discussion. Selection criteria for Design Variables, 
which are the independent variables of an optimization, are given in table 1. 
 

table 1. Recommended Selection Criteria: Design Variables 

          

1. Represent clear physical or technical features of the design layout that can be 
expressed and parametrically modified by a single numerical value (ex. Wing 
Loading), or can be clearly explained as a discrete, "either-or" choice (ex. Tail Type).   

2. Should not represent items of specific end worth or value to customers (ex. Range, 
Speed, Cost) - such items should be incorporated into the measure of merit or 
constraints.   

3. Non-trivial and calculable impact on chosen MOM (typically related to weight or 
range).  

4. Global impact - i.e., affect entire design such that variables cannot be optimized 
independently (ex. Inlet duct length of commercial airliners doesn't usually require 
global optimization). 

5. Reflect current and historical design parameters and vocabulary wherever possible. 



 39 

 
The last point needs further discussion. Some MDO research reports indicate use of 
design variables unlike those normally used in industry design offices (for example, Knill 
et al45, Koch et al67). This is especially true in the optimization of wing geometry, where a 
"cloud" of arbitrary X-Y planform points is sometimes used to define and optimize the 
wing, typically with leading and trailing edge points at the root chord, tip chord, and a 
few “break” points. In such a scheme the wing area, sweep, aspect ratio, and other 
reference wing parameters are determined by the final locations of these X-Y planform 
points rather than being specified in the MDO routine. Results sometimes show wild 
"optimal" planforms with grossly exaggerated chord length changes, including tip chords 
substantially longer than inboard chords implying negative taper. This requires a 
laborious and design-dependent process to drive out those obvious bad answers. 
 
Aircraft designers think and design in terms of the trapezoidal reference parameters, 
namely wing loading (or area), aspect ratio, taper ratio, sweep, thickness, and dihedral. 
These define the wing in a time-honored and useful fashion, and there is a wealth of 
historical and test data to assess and bound the wing planform selection based on those 
parameters. Non-trapezoidal changes to the basic wing shape are generally considered in 
terms of percent chord variation from the trapezoid at specified percent span locations. 
 
Use of this "normal" way to define the wing has two major benefits. First, it makes the 
results immediately meaningful to experienced industry aircraft designers. Second, and 
perhaps more important, these traditional design variables can easily be checked for 
reasonableness against standard design practice (see, for example Batill et al.65, 
Isikveren66, Pant and Fielding47, or Crossley et al.48).  
 
Another desirable feature in a suite of design variables, consistent with historical practice, 
is to utilize ratios and non-dimensional parameters to the greatest extent possible. This is 
seen in the wing parameters discussed above, and is also true in parameters such as 
fuselage length-to-diameter ratio, engine bypass ratio, propeller disk loading, and tail 
volume coefficient. Not only is it easier to control wild excursions with ratio-based 
variables, but comparisons to other designs and prior design iterations are facilitated. 
 
Another type of variable should also be considered and defined, the “noise” variable. 
These are not parametric variables that will control the characteristics of the aircraft. 
Instead, they are uncertainties in either the definition and analysis of the aircraft itself or 
in some external factor that will affect the optimization outcome. In classical aircraft 
design analysis, we subject the baseline aircraft design to parametric variations of drag 
coefficient, engine fuel consumption, empty weight, and similar factors to determine how 
sensitive our concept is to unexpected variances from our best-guess predictions in these 
areas. We also subject the design to variations in external factors such as fuel cost or 
passenger load factor to determine if our concept is still economically viable in the face 
of such uncertainty. In a similar fashion, MDO methods can assess sensitivity to such 
noise variables. A good example of such incorporation of noise and control variables into 
an MDO method can be seen in Mavris68. 
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Recommended selection criteria for Design Constraints are provided in table 2. These can 
be considered the constraint lines in the optimization. 
 

table 2. Recommended Selection Criteria: Design Constraints 

        

1. Represent calculable properties of the aircraft given a particular set of values of the 
Design Variables. 

2. Must-meet numerical values derived from commercial or military specifications, 
safety, operability considerations, customer desires, or overall good design practice. 

3. Preferable if design constraints represent "firm" requirements that are unlikely to be 
relaxed in the face of cost/performance shortfalls.  

 
Concerning the last statement, more flexible requirements such as cruising altitude could 
be folded into a compound MOM. This would allow the optimizer to "discover" that a 
slight reduction in cruise altitude makes the aircraft much cheaper. This approach is 
difficult and is not normally done with classical aircraft optimization methods such as 
carpet plots. Instead, we have demanded a particular cruising altitude (continuing the 
example), and when the aircraft was heavier and more expensive than we'd hoped, we 
started looking for something of lesser priority to trade away. By proper formulation of 
the MOM in an MDO routine we can learn that up front. 
 
The required numerical values of the constraints are normally considered to be "firm". If 
the FAR/JAR climb requirement is 50 fpm, a design yielding 51 fpm gets no extra credit 
whereas a design yielding 49 fpm cannot be certified nor sold. In some cases, though, 
requirements are customer-driven and are not so firm. The customer may indicate a desire 
for, say, a 2000-ft field length but if offered a cheaper aircraft with a 2500-ft field length 
would probably be happy. These can be handled with some variation of "fuzzy logic" or 
via ramp-shaped weighting functions applied to the MOM based on the calculated 
constraint values. (Note the blurring of distinction between constraints and measures of 
merit.) 
 
Some design constraints fall into a special category in that they can either be 
implemented as constraint lines bounding the optimization, or they can be used to adjust 
the design directly during the optimization.  For example, it is usually wise to consider 
aircraft volumetric density as a constraint, not allowing it to rise above some selected 
practical value. This could be treated as a calculated property with an appropriate 
constraint line through the design space. Or, it could be used to redefine the aircraft 
geometry for each iteration (the preferred approach, discussed below). If the aircraft total 
volume reduces due to, say, a reduction in wing area, the optimizer could make up the 
volume shortfall by lengthening the fuselage. This will probably result in a faster solution 
than an optimization that merely penalizes a design having inadequate internal volume. 
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Recommended selection criteria for Measures of Merit are provided in table 3. The MOM 
is the objective function and represents the dependent variable(s) in the optimization. 
 

table 3.  Recommended Selection Criteria: Measures of Merit 

 

1. Represent a non-trivial and calculable indication of the worth of the concept. 
2. Materially affected by the design variables and constraints.  
3. Clear meaning to designers and customers.  
4. If blended, need clear rationale for method and factors used for blending 

 
Worth is typically defined as cost or a cost-related measure such as weight. For a fixed-
size design, worth may be defined by a selected performance result such as range. Some 
important sales-related aspects of a design cannot be included in a MOM – beauty, 
benefit to mankind, national pride, or "to infinity and beyond" can have no role in MDO 
unless they can be reduced to non-trivial and calculable numbers 

 
Appendix A contains suggested design variables, constraints, and measures of merit 
based on the above discussion and on historical usage in the aircraft industry. During this 
research, certain of these suggested design variables, constraints, and measures of merit 
have been programmed into MDO routines and evaluated for their utility and relative 
importance to the design solution. 



 42 

 
 
 

(This page intentionally blank) 
 



 43 

3 OBJECTIVES AND SCOPE OF RESEARCH 

3.1  MDO Methodologies for Aircraft Conceptual Design 

The overriding objective of this research is to offer improvements to the aircraft design 
process through the application of Multidisciplinary Optimization methods. This research 
focuses exclusively on the conceptual design process where new aircraft concepts are 
being developed, assessed, and selected for further design effort.  
 
A deliberate decision was made to focus on zeroth-order optimization methods that iterate 
to a solution based solely on parametric evaluations of the measure of merit and design 
constraints. Such methods seem most capable of dealing with discontinuous and highly 
irregular objective and constraint functions, and also appear most suitable for 
incorporation into existing aircraft analysis codes such as this author’s RDS-
Professional69. 
 
A key objective is the ability to make direct comparisons between and among the various 
MDO methods programmed, using the same sample aircraft and the exact same analysis 
methods and executable code. In this manner some attempt at identifying a “best” method 
could be made, at least for the classes of aircraft studied and the optimization variables 
chosen. 
 
In addition to the step searching method already programmed into RDS, a decision was 
made to focus on MDO methods in which the parametric variations to the aircraft design 
are all done with a chromosome-based scheme. This led to the selection of Monte Carlo, 
Evolutionary, and Genetic Algorithms. These could all be programmed as a related 
family of methods. 
 
Another objective is the investigation of the relative importance of design variables and 
constraints common to aircraft conceptual design projects, including performance 
constraints and geometric constraints such as wingspan. To improve acceptance by 
practicing aircraft designers, this research is based on the design variables, constraints, 
measures of merit, and analysis methods typically used in industry. 
 
In selecting these variables, it was decided to forgo inclusion of any propulsion system 
design variables such as jet engine bypass ratio or propeller diameter (other than, of 
course, engine size via the T/W ratio). This does not imply that this author considers those 
unimportant, and they may be studied at a later date. However, parametric engine models 
that permit such design variations are only approximations of the complexities of actual 
engine data, and often ignore factors such as overspeed limits, part-power installation 
drag changes, actual bleed and power takeoff effects, or continuous power limits. Those 
complexities are calculated by large cycle analysis programs at the engine companies, 
and their sophisticated data is normally provided as an input to the aircraft design 
analysis and optimization. Trades are done using alternative engines as provided by the 
engine company.  
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3.2 Procedures for Automated Aircraft Redesign 

This research actually started from a personal interest in this particular topic – how to 
have a computer program automatically redesign the aircraft during an optimization as 
design variables are parametrically changed, such that the resulting optimum aircraft is 
closer to being feasible when a human aircraft designer turns a computational optimum to 
a real configuration layout. This author previously developed a simple set of such 
techniques for the RDS-Professional program optimizer, but clearly more work was 
called for. 
 
Thus, an objective of this research is to define and assess a set of procedures for the 
automated aircraft redesign that others can incorporate into their MDO routines to 
enhance optimization realism. Hopefully this can help to make MDO more useful to 
industry aircraft designers working on real aircraft design projects. 
 
In this research, this author’s prior methods were expanded in several key areas. Most 
important, and apparently original, was the definition and validation of Net Design 

Volume, a measure of the packaging density of an aircraft design layout and a geometric 
constraint for MDO routines that avoids unrealistic configurations being defined by the 
optimizer. This addresses the issue of maintaining a realistic internal volume with 
allowance for fuel, payload, avionics, propulsion, and the numerous smaller subsystems 
that are properly designed only long after conceptual design.  
 
Automatic aircraft redesign procedures are discussed in Section 5.  
 

3.3  Validation Models and Limits of Research 

Four notional aircraft design concepts were prepared during this research. These were 
used as validation models to assess the MDO routines and automated aircraft redesign 
procedures. These are intended to span the spectrum of current design thought, and 
include a conventional jet transport, an F-16 replacement export fighter, a tactical 
unmanned air vehicle, and an asymmetric general aviation twin, as shown in figure 14. 
Section 6 provides a full description of these designs. 
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figure 14. Validation Models: Four Aircraft Notional Concepts 

 
Each was designed and analyzed using the RDS-Professional program, and the results 
were compared to existing aircraft to ensure reasonableness and credibility of the data. 
MDO verification tests were conducted to determine any design-specific problems with 
the methods or the code (these runs are not included in the run matrix defined in the 
Appendices, and total about 20 runs).  
 
While spanning the spectrum of design concepts, these validation models represent only a 
tiny subset of the available options for aircraft design and will differ from the concepts 
considered in any particular industry design project. Thus, any conclusions reached in 
this research must be carefully reviewed when applied to other aircraft concepts (as well 
as other MDO approaches and aircraft analysis methods). 
 
Furthermore, not all of the available MDO methods were included in this research – 
methods were limited to the Orthogonal Steepest Descent and the Chromosome-based 
methods as described above. Results herein cannot be extended to cover methods not 
studied, and the author’s reasons and rationale for selecting particular MDO methods may 
not apply to others. However, within the methods studied and the limits of the methods 
and test models employed, these results should be of interest. 
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4 APPROACH AND METHODS 

4.1 Overview of Approach 

The fundamental approach to the research described herein was to develop a 
sophisticated aircraft conceptual design computer program featuring a wide variety of 
MDO methods and options, incorporating a variety of design variables and automated 
vehicle redesign procedures, and then to run comparisons for four different notional 
aircraft design concepts. In all, over a million parametric aircraft designs were generated 
and analyzed in this research, and well over a hundred MDO runs were conducted along 
with numerous two-variable carpet plots for comparison. 
 
In work previously reported on, this author developed the RDS computer program 
including Professional and Student versions. RDS70 includes sophisticated 
implementations of the classical analysis methods71 used in industry for many years, and 
incorporates a CAD module for initial 3-D layout of design concepts. RDS also includes 
a multidisciplinary optimizer based on the full-factorial Orthogonal Steepest Descent 
method described herein6. RDS-Professional is available through Conceptual Research 
Corporation (PO Box 923156, Sylmar, CA, 91392, USA). 
 
To conduct comparative optimizations using different aircraft conceptual design 
optimization methods, a highly flexible optimization module was programmed into the 
RDS-Professional program. This allows optimization, based on exactly the same inputs 
and analysis methods, using a variety of methods. These include the Orthogonal Steepest 
Descent Search, random Monte Carlo method, a collection of Genetic Algorithms, and an 
Evolutionary technique, as described below. 
 
For these MDO methods, the program allows selecting from numerous options which, 
taken together, largely span the range of methods in use. These options, defined and 
detailed below, include: 
 

• Number Of Individuals per Generation/Gang  

• Total Number Of Generations/Gangs  

• MOM Weighting Schemes: 
1. Linear 
2. MOM Rank Percentage-Squared 
3. MOM Rank Percentage-4th Power 
4. MOM Rank Percentage-Sine Wave 

• Performance Penalty Factor and Variation (allows simulated annealing) 

• Elitism (Best Survive Unchanged Into Next Generation) 

• Option To Replace Individuals In Population After Breeding 

• Breeder Pool Size (Percent Of Total Population) 

• Mutation Probability Factor 
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• Breeding Crossover Options: 
1. Single-Point Crossover  
2. Uniform Crossover 
3. Parameter-Wise Crossover  

• Geometric constraint holds including 
1. Fuselage maximum length 
2. Fuselage minimum diameter 
3. Wing maximum span 
4. Wing Aspect Ratio vs. Sweep to avoid pitchup 
5. Net Design Volume (described below) 

 
Note that every option is not appropriate for every MDO method. 
 
Coding for these methods and options was added to the latest version of the RDS-
Professional program, and quite possibly represents the widest variation of MDO 
capabilities ever programmed into one computer program.  
 
Since it is intended to include these methods with the next commercial release of RDS-
Professional, the coding had to be practical for industry usage. Requirements for industry 
practicality were well defined in the CFD context by Vos, Rizzi, Darracq, and Hirschel, 
as follows19: 
 

1. Assured Accuracy (fidelity) in the sense that the engineer has confidence in the 
results, 

2. Acceptable costs in terms of both computer run times, including set up and 
turnaround, and human effort to learn the skills to run the code, 

3. Robustness so that it can be run by a non-specialist, and 
4. Sufficient Generality in the data structures and objects allowing future code 

modifications, refinements and developments. 
 
These guidelines were employed in the RDS implementation of MDO techniques, with 
reasonable success in this author’s opinion. Final proof of this can only occur with 
customer acceptance and use of the end result. 
 
In operation, the optimizer begins by prompting the user for the analysis input files to 
use. These are normally the defaults for the design being optimized, which have 
previously been created by the user during the normal course of design evaluation. These 
include the inputs defining the performance constraints, which can include takeoff 
(ground roll, total takeoff distance, FAR 25 takeoff distance, or balanced field length), 
landing  (landing ground roll, total landing distance, FAR 25 landing distance, or no-flare 
landing distance), rate of climb, time to climb, Ps at a given load factor, instantaneous 
turn rate, and acceleration time or distance.  
 
The user then selects the MDO algorithm and options to employ. Next the user selects the 
objective function (Measure of Merit) which can be Takeoff Gross Weight (Wo), Empty 
Weight, Fuel Weight, Purchase Price, Life Cycle Cost, Net Present Value, or Internal 
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Rate of Return. For designs with a fixed-size engine, the objective Measure of Merit is 
Range based on the user-defined mission. Also, the design space is defined by user inputs 
as to the maximum and minimum values of the design variables (with defaults of plus and 
minus 20%). 
 
Following user selection of the appropriate optimization options as listed above, the 
program commences with parametric or random variations about the user-defined 
baseline design, depending on the MDO algorithm being employed. Each design 
variation is analyzed as to aerodynamics, weights, propulsion, sizing, performance, and 
cost. Sizing results (weight or range) or cost are used as the MOM, as selected by the 
user. Optimization then proceeds as detailed below. 
 
Four validation models (aircraft test cases) were developed to test these methods and 
determine relative suitability for different classes of aircraft. Since the subject of this 
research is aircraft conceptual design, the test cases are notional aircraft designs. These 
include a jet transport, a single-engine fighter, an unmanned air vehicle, and a general 
aviation twin. These are defined in detail in the Section 6. 
 
These four validation models were optimized repeatedly using different MDO routines 
and different options of those routines. Results are detailed in Section 7. Below are 
descriptions of the MDO methods and options as implemented into RDS-Professional for 
this research. 
 

4.2 Orthogonal Steepest Descent Search 

Orthogonal Steepest Descent, a full-factorial stepping search, has been successfully 
running in RDS-Professional for a number of years and has been used on various research 
projects such as that reported in Raymer and Burnside Clapp72.  
 
As originally programmed, this method would optimize an aircraft concept 
simultaneously using six key design variables, namely T/W, W/S, aspect ratio, taper ratio, 
sweep, and thickness. During the research described herein, this was expanded to include 
fuselage fineness ratio (f) and wing design lift coefficient (CL-design). Section 5 discusses 
selection of these variables and the manner in which the aircraft concept is varied as these 
parameters are changed (automated aircraft redesign). 
 
The Orthogonal Steepest Descent optimizer relies upon defining ratio multipliers for each 
of the design parameters, and adjusting those ratios until an optimum is found. These 
ratios are used to modify the analysis input data. For example, if the baseline wing 
loading is 100, the baseline design is represented by a wing loading multiplier ratio of 
1.0. This is changed during the optimization until the best design is found with, say, a 
wing loading multiplier ratio of 0.88 (i.e., the optimal wing loading was found to be (100 
x 0.88=88).  
 
Optimization is done using step searching by a simple comparison method. Starting from 
a baseline aircraft definition, each variable is parametrically varied using these ratios by 
plus and minus some selected step size, in the same exhaustive manner as a full-factorial 
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design of experiments. The resulting 3n aircraft (where n = number of design variables) 
are all analyzed for aerodynamics, weights, sizing, cost, and performance. Propulsive 
thrust is merely ratioed to the defined T/W since, as of yet, no propulsion system design 
variables such as bypass ratio or propeller diameter have been included which would 
substantially change thrust or fuel consumption characteristics.  
 
The "best" variant, that with the lowest value of the selected measure of merit that also 
meets all performance requirements, is remembered and when all parametric variations 
about the initial baseline are exhausted, becomes the center point baseline for the next 
iteration loop.  This continues until no better variant is found, then the stepping distance 
is shortened and the process repeated until some desired level of resolution is obtained. 
This was depicted in figure 9. The coding logic is shown in figure 15.  
 

         
 

figure 15. OSD Optimizer Program Logic 

 
This process has been termed "Orthogonal Steepest Descent (OSD)" since it changes 
design variables by plus/minus increments about the current "best", moving along the 
orthogonal parametric axes in the direction that produces the largest improvement in the 
measure of merit without violating the performance constraints. OSD does not attempt to 
compute the gradient vector to find the true direction of steepest descent, which is likely 
to be off the parametric axes – hence the name Orthogonal. But, it eventually finds the 
correct answer as the step resolution is decreased, and has proven to be very robust and 
reasonably fast. With eight design variables on a modern one-gHz computer, it typically 
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finds an optimum in about 10-30 minutes depending on the resolution sought and the 
complexity of the design mission.  
 
While this method can theoretically result in a "local" solution because it searches 
starting from a single point, the initial step size is so large that the whole design space is 
initially examined. Also, it is presumed that a well-designed initial aircraft concept used 
as a starting point for the optimization will not be "on the wrong mountain". The solution 
obtained should be the global solution for the given design space unless the designer is 
completely wrong about the chosen design approach.  
 
The Orthogonal Steepest Descent method is so simple and direct that it cannot get stuck 
in a loop or fail to find any solution at all unless the baseline aircraft is so poorly 
designed that neither it nor any parametric variations of it can meet all performance 
requirements. Also, it is deterministic, always finding the same solution to many decimal 
places when starting from the same baseline design. Therefore, it makes a good 
benchmark for study of other methods, especially those stochastic methods that may seem 
to converge but may actually fail to find the “true” best design.  
 

4.3 Definitions and Operations for Chromosome-based Methods 

The remaining MDO methods coded for this research are all related in that they are all 
stochastic in nature, and they all rely on a chromosome/gene bit-string to define the 
parametric variations of the aircraft being optimized. They also share many optimization 
options and parameters, as discussed below. As with the OSD optimizer, the MDO 
methods below all optimize for eight variables consisting of T/W, W/S, aspect ratio, taper 
ratio, sweep, thickness, fuselage fineness ratio, and wing design lift coefficient. 
 
The following sections define this chromosome gene bit-string and the various operators 
used in the chromosome-based methods developed for this research. 

4.3.1 Chromosome/Gene Bit-String Definition 

In nature, the characteristics of an individual of a species are defined by Genes, which are 
connected together in a specified order forming Chromosomes. A similar scheme is 
employed for the Monte Carlo, Evolutionary, and Genetic algorithms as used herein. 
Specific values of design variables defining an individual aircraft are based on 
chromosome-like bit-strings comprised of ones (1s) and zeros (0s). Different values of 
those binary digits define a variety of alternative design permutations.   
 
The following chromosome/gene bit-string definition is used:  
 

     T/W         W/S            A            taper       sweep         t/c       fuselage l/d    CL-design        
   000000  |  000000  |  000000  |  000000  |  000000  |  000000  |  000000  |  000000   

 
Each of the eight parameters is defined by a gene consisting of six binary digits that 
represent position on a spectrum from lowest to highest permitted value of that design 
variable, as input by the user. Thus, if the user allows wing loading to range from 40 to 
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100, the string 000000 represents 40, the string 111111 represents 100, and 001010 for 
example represents {40+(100-40)(10/63)=49.52}. 
 
This chromosome-based scheme actually turns the continuous variables into discrete 
variables. The resolution can be made as fine as desired by using more bits for each 
design variable. Resolution is calculated by 
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where xmax is the upper bound, xmin is the lower bound, and l is the number of bits used to 
represent each gene (six as applied here). In the wing loading example above, the 
resolution is 0.95, equal to the total span of the variable (100-40=60) divided by the span 
of numbers represented by that variable’s bits (60/63=.95).  
 
While more digits than six would give greater fineness to the variable graduations, this 
author believes that such accuracy is greater than the noise level of aircraft conceptual 
analysis and hence is not worth the trouble and computational expense. 
 
Put another way, this chromosome definition of eight gene parameters each represented 
by six bits gives 648, or 281,474,976,710,656 possible aircraft variations. That should 
include some concepts very close to the absolute optimum! Needless to say, exhaustive 
enumeration and analysis of all possible variations is out of the question. 
 
Purely discrete variables such as tail type or number of engines have not been considered 
as of yet. It was originally intended to do so, but the problem of the definition of 
believable procedures for automated redesign for variations such as one engine vs. two 
proved insurmountable except for limited design-specific cases. This remains a fertile 
field for further research, and is discussed in section  5.6 below. 
 
This chromosome scheme relies upon a user-defined baseline aircraft design that provides 
a point of departure for defining an initial population of designs. This design is created 
using normal aircraft design practice, and must have previously been analyzed as to 
aerodynamics, weights, propulsion, performance, sizing, range, cost, etc… The input data 
files developed to do that analysis are modified by the optimizer routine to develop 
different designs according to the codes in the chromosome string. If, say, the baseline 
design has a wing loading of 60 but the particular “individual” being created is supposed 
to have a wing loading of 90, then the aerodynamics and weights inputs for wing loading 
would be multiplied by 90/60=1.5. Other effects such as a change in tail size would also 
be made, again by changing the inputs to the appropriate analysis. 
 
There is a subtle but important terminology issue for this study. The chromosome scheme 
has a “baseline design” that is used to develop the analysis input data, but that design is 
not a “starting design” or “basepoint”. These optimizers do not start with this initial 
design and then search around for improvements – that is how the OSD method works. In 
the chromosome-based schemes, the baseline is only used to generate the initial 
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population, which may or may not include that original baseline! It could be said that the 
baseline design concept in a chromosome-based scheme is really an analysis calibration 
device rather than an initial design. 
 
In all the chromosome-based routines, an initial population of up to 500 designs is created 
by using a digital random number generator to create each bit in the chromosome string 
(see code snippet§§). Then, this string is used to change the input variables of the baseline 
design, creating a unique “individual” for each chromosome string defined. Where the 
optimizers differ is how they proceed after this initial population is created. 
 
FOR iAC=1 TO iPopultn 
 FOR idum=1 TO iNumBits 
   RNUM%=INT(ROUND(RND,0))                ‘creates random integer 0 or 1, RND is random real 0-1             
   GA$(iAC)=GA$(iAC)+LTRIM$(STR$(RNUM%))    
   NEXT idum 
NEXT iAC 

 

4.3.2 Selection - MOM Weighting 

Selection of the “best” individual or individuals is based primarily on the calculated value 
of the Measure of Merit (objective function). This is determined from the aerodynamic, 
weight, propulsion, sizing, performance, and cost analysis of the revised aircraft per the 
design parameters as defined by that aircraft’s chromosome bit-string. As implemented 
herein, measures of merit include takeoff gross weight, empty weight, fuel weight, 
purchase price, life-cycle cost, and internal rate of return (financial analysis). 
Alternatively, range can be used as the MOM if the aircraft weight is specified or fixed 
for some reason. 
 
The MOM can be directly used for selection. The best aircraft is ranked first, the next 
best is second, etc… In some methods this may cause premature convergence due to the 
excessive influence of a few initial “super-individuals”. To counter this, a random 
“stirring” can be applied to the calculated values of the MOM. The MOM’s of all the 
individuals are mapped to a 0-1 scale, then those values are multiplied by a 0-1 random 
number. These random-adjusted MOM values are then used to determine which 
individuals are selected for defining the next generation. The ultimate selection of the 
final most-optimum aircraft is not random-stirred, for obvious reasons.  
 
This random-stirring approach may excessively penalize the better individuals. Being 
“lucky” is equally weighted with being “good”. To increase the importance assigned to 
MOM as opposed to the random factor, MOM weightings were added in which the 0-1 
MOM scale is adjusted by a weighting function.  

                                                 
§§ Code snippets are intended to illustrate the methods employed and to assist others in duplicating them. 
They are not themselves executable, nor do they illustrate the thousands of lines of code required to make 
them executable in the actual MDO routines (plus ~20,000 lines of analysis code). Code snippets are 
illustrated using conventions from Powerbasic, a high-end compiled extension of Basic that generates fast 
executables yet remains easy for a non-expert to read. For a full description of programming statements as 
used in these code snippets, see the Powerbasic Reference Manual, Powerbasic Inc., Carmel CA, 1997.   
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A linear weighting function represents the original, simple multiplication of MOM 
ranking scale times a random (0-1) number. Other options, which bias selection in favor 
of the better individuals, include MOM2, MOM4, and cos(MOM), as shown in figure 16. 
The cosine function seems especially desirable because it not only increases selection of 
the best individuals, but minimizes the probability that the bottom-most individuals will 
get “lucky” enough be selected for defining the next generation. 
       

 
figure 16. MOM Weighting Functions 

 
A high (good) MOM value returns a low MOM weight because the final selection 
criterion is a minimization (see code snippet below). When range is used as the  MOM, it 
is subtracted from an arbitrary big number to convert optimization to a minimization 
problem. 
 
xKmom=(xMOM(iAc)-WrstMOM0)/(BestMOM0-WrstMOM0) 
IF ibWeight=1 THEN                       'linear 
        WtMOM= abs(1.-xKmom) 
       ELSEIF ibWeight=2 THEN       'MOM^2 
        WtMOM= (1.-xKmom)^2 
       ELSEIF ibWeight=3 THEN       'MOM^4 
        WtMOM= (1.-xKmom)^4 
       ELSE                                          'cosine wave 
        WtMOM= (0.5+0.5*cos(3.1416*xKmom)) 
       END IF 
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4.3.3 Selection - Performance Penalty Function 

An essential part of engineering optimization is the use of constraints. These are typically 
“must-meet” performance requirements or real-world geometric constraints such as a 
maximum permitted wingspan (if violated, the airplane won’t fit into the terminal gate). 
In classical carpet plot optimization, the constraints are lines on the graph, shaded to 
represent the “don’t-go” (infeasible) direction. In most cases the optimum solution is 
found where two of the constraint lines intersect or where the objective function is 
tangent to a constraint line. 
 
In the first version of a Genetic Algorithm developed for this research (reported in 
Raymer and Crossley49), a similar “don’t-go” strategy was employed. Aircraft variants 
that violated one or more constraints were “killed”, with no chance of reproduction or 
continuation into the next generation. This method worked, but typically led to the 
immediate elimination of about 65% of the population for the first generation. Later a 
subtler and less brutal strategy was incorporated as an option based on the Penalty 

Function Method.  
 
In the Penalty Function Method, constraints are turned into adjustments to the measure of 
merit. If a constraint is violated, some function related to the amount of constraint 
violation is applied to degrade the calculated value of the objective function (measure of 
merit). For example, an aircraft with a takeoff distance in excess of the required value 
would have its weight (if that is the measure of merit) increased in some fashion from the 
actual calculated value. 
 
In mathematical terms, this approach can be expressed as the creation of a modified 
objective function f from the actual objective function fausing penalty multipliers cj (also 
called draw-down coefficients or penalty weights), as follows: 
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The constraints are defined in the gj functions, which are positive-valued if the constraint 
is violated and negative-valued if it is satisfied, as follows:  
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If a constraint function gj is not violated, the term max [0, gj] is zero so there is no 
adjustment to the objective function from that constraint.  
 
Note that the Penalty Function Method turns a constrained optimization into an 
unconstrained one. Also, it is possible to relax the penalty early in the optimization then 
tighten it later to ensure that the final optimum does meet all constraints, much like in 
Simulated Annealing. This has special application in Evolutionary and Genetic 
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algorithms because it allows useful schemata to be preserved into later generations even 
if the resulting solution does not exactly meet all constraints.  
 
The key to successful use of the Penalty Function Method is the selection of the function 
used. Early in this research a ranking scheme was defined based on a user-input penalty 

acceptance ratio for each performance requirement, expressed as the percent of 
degradation in a given performance requirement acceptable for a percent improvement in 
the objective MOM73. The calculated MOM was to be increased or reduced by the MOM 
times the relative shortfall in performance value divided by its user-defined penalty 
acceptance ratio.  
 
Upon further reflection it was decided to first try something simpler, because of the 
increased user workload and the uncertainties associated with using qualitative 
assessments for such a critical part of the optimization. Furthermore, many of the 
performance requirements used in aircraft design are based on the performance parameter 
Specific Excess Power (Ps) for which the required value is often zero. This makes it 
difficult to define a suitable ratio for violation of the constraint. 
 
The simplest possible Penalty Function Method was therefore tried, namely, a scalar 
penalty factor that is multiplied times the objective function (measure of merit) for each 
constraint that is violated. No attempt is made to decide by how much the constraint was 
missed, nor the relative importance of, say, missed takeoff distance vs. missed turn rate. 
If a design misses two performance constraints, its objective function is twice multiplied 
by the penalty factor in use. 
 
Furthermore, provisions were made to allow starting this penalty factor multiplier at one 
value and linearly increasing it to another value as the optimization proceeds. By starting 
at 1.0 (no penalty) and increasing to a high value such as 2.0, a form of Simulated 
Annealing is obtained. By starting and ending at a high value such as 2.0, the 
“immediate-kill” of classical aircraft optimization is obtained.  
 
This simple version of a Penalty Function Method*** proved to work so well that the 
more-complicated scheme described above was abandoned. 

4.3.4 Elitism and Replacement 

During the execution of Evolutionary/Genetic algorithms, a counter-convergence effect is 
sometimes seen. Literally, the next generation is worse than its predecessor generation, or 
at least, the best individual in the next generation is sometimes worse than the best of the 
prior generation. This is to be expected due to the stochastic nature of such optimizations.  

                                                 
*** The Penalty Function Method described here is more-properly termed an Exterior Penalty Function 
Method, because it is only active if the solution is outside the feasible design space. Interior penalty 
functions are also possible, wherein the objective function is penalized as the constraint barrier is 
approached from within the feasible design space. An interior penalty approaches infinity at the constraint 
barrier, preventing passing into the infeasible region. This method was not investigated because it does not 
provide the “forgiveness” properties that will allow relaxation of constraints early in the optimization to 
maintain desirable schemata, nor does it promote final solutions exactly on the constraint lines as is typical 
in aircraft design optimization problems. 
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A simple means of preventing such “backsliding” is to take the best individual of each 
generation into the next generation. Then, if none of the new generation is any better, that 
generation’s best is unchanged from the prior generation. This is called “Elitism”, and is 
implemented herein by allowing the user to specify up to 50 top members of each 
generation to be inserted into the next generation.  
 
Elitism is contrary to the evolutionary nature of such routines because the Elite individual 
is unchanged, either through crossover or mutation. Implementations that are restricted to 
small population sizes suffer an evolution penalty if Elitism is employed, because one or 
more individuals in each population are not evolving. Elitism is a fix to a problem, not a 
desirable thing in of itself. But, with population sizes of up to 500 individuals, Elitism is a 
trivial penalty to the codes described herein and does serve to avoid “backsliding”, as is 
shown in test cases below. 
 
Another option separating various evolutionary and GA schemes is the decision as to 
what to do with chosen parents after they have “bred”. Some favor discarding them, 
others favor replacing them in the “pool” to be selected again (if lucky). The 
implementation herein allows either option, termed With Replacement and Without 

Replacement. 

4.3.5 Chromosome String Crossover 

Essential to Genetic Algorithms is the concept of crossover, equivalent to mating in the 
real world of biology. Crossover is the method of taking the chromosome/gene strings of 
two parents and creating a child from them. Many options exist, allowing a nearly 
limitless range of variations on GA methods. The following options were coded into the 
RDS-Professional MDO module. 
 
Single-Point Crossover: Performs the combination of genetic information from two 
parents by breaking their chromosomes into two pieces, sticking the first part of one 
parent’s chromosome with the second part of the other’s. The point where the 
chromosome bit-strings are broken can be either the midpoint or a randomly selected 
point. In the implementation herein, a second child was not created from the leftover 
pieces as described in Section 2.5.10.  
 

   ‘ibCross=3 is midpoint crossover, ibCross=4 is random point 
   ‘MID$( GA0$(),1,idum1) finds bit value at idum1 position 
IF ibCross=3 THEN idum1=INT(.5*iNumBits)   ‘midpoint 
             ELSE idum1=INT(RND*iNumBits)  ‘random point 
   RNUM%=INT(ROUND(RND,0))  
   IF RNUM%=0 THEN 
     GA0$(0)=MID$(GA0$(iParent1),1,idum1)+ MID$(GA0$(iParent2),idum1+1,iNumBits-idum1) 
     ELSE 
     GA0$(0)=MID$(GA0$(iParent2),1,idum1)+ MID$(GA0$(iParent1),idum1+1,iNumBits-idum1) 
     END IF 
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Uniform Crossover: Combines genetic information from two parents by considering 
every bit separately. For each bit, the values of the two parents are inspected. If they 
match (both are zero or both are one), then that value is recorded for the child. If the 
parents’ values differ, then a random value is selected. 
 
FOR ij=1 TO iNumBits               
   b1$=MID$(GA0$(iParent1),ij,1)  ‘finds value at ij position 
   b2$=MID$(GA0$(iParent2),ij,1) 
   IF b1$=b2$ THEN 
      GA0$(0)=GA0$(0)+b1$ 
      ELSE 
      RNUM%=INT(ROUND(RND,0))      
      GA0$(0)=GA0$(0)+LTRIM$(STR$(RNUM%)) 
      END IF 
   NEXT ij 

 
 
Parameter-Wise Crossover: Combines parent information using entire genes defining the 
design parameters such as T/W. Here, each gene is six bits. For each gene, one parent is 
randomly selected to provide the entire gene for the child. Mutation (see below) is 
especially important for this crossover method because otherwise, only design parameter 
values found in the original population would ever be found in the final population. 
 
FOR ij=1 TO iNumBits STEP iVarBits 
   b1$=MID$(GA0$(iParent1),ij,iVarBits)  
   b2$=MID$(GA0$(iParent2),ij,iVarBits) 
   IF b1$=b2$ THEN 
      GA0$(0)=GA0$(0)+b1$ 
      ELSE 
      RNUM%=INT(ROUND(RND,0))               
      IF RNUM%=0 THEN GA0$(0)=GA0$(0)+b1$ ELSE GA0$(0)=GA0$(0)+b2$ 
      END IF 
   NEXT ij 
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4.3.6 Mutation 

Mutation is applied to the offspring immediately after the crossover (mating) operation is 
performed. Mutation is done by considering every bit in the new chromosome, and 
multiplying a random number (0-1) times a probability factor constant. If this product is 
less than one, the bit in question is “flipped” from zero to one or vice versa. Therefore, 
the numerical value of this probability factor is simply the inverse of the percent 
likelihood of the bit being “flipped” – a high value offers a low chance of mutation (see 
code snippet). 
 
FOR ij=1 TO iNumBits 
   b1$=MID$(GA$(iAC),ij,1) 
   RNUM%=INT(ROUND(RND*ProbFctr/2.,0))  
   IF RNUM%<1 THEN                      
     IF b1$="0" THEN b1$="1" ELSE b1$="0" 
     END IF 
   GA$(0)=GA$(0)+b1$ 
   NEXT ij 

 
Applied to all 48 bits of the chromosome string used herein, an individual's probability of 
mutation is found to be: 
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In Section 2.5.10 it was suggested that, for uniform crossover, the mutation rate should 
equal ((1+L)/2NL). For L=48 bits and N=500 individuals per generation, this would be a 
bit mutation rate of one in a thousand (probfctr=1000). This was used as the default in 
this study, and provides a 5% chance of an individual having one or more mutations.  

4.3.7 Convergence Measure – Chromosome Bit-String Affinity 

Evolutionary and Genetic algorithms are iterative in nature, with a (hopefully) better and 
better result appearing as the solution progresses. This approach to the final “best” 
answer is called convergence, and is both an indication as to whether a solution is 
emerging, and an aid to the decision to stop the optimization and declare a solution. 
 
In mathematical terms a sequence of steps converges with order r when r is the 
asymptotic convergence rate and represents the largest number for which 
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where x* is the “true” optimal solution and xk is the calculated value for iteration k. If the 
convergence rate r equals one, the sequence exhibits linear convergence meaning that the 
solution is approached in a fashion in which the ratio between the current solution’s error 
and the previous solution’s error is either reducing or staying roughly constant, not 
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increasing towards infinity as you approach the final solution. If r=2, the convergence is 
quadratic, etc.  
 
In the evolutionary and genetic algorithms used in this research, convergence can be seen 
on the output graphs of measure of merit vs. iteration number. The convergence ratio as 
defined above was calculated for each run but was of little use because the convergence 
of these methods does not tend to follow a sure and steady trend of any order r. Instead, it 
tends to jump around, sometimes flattening out as several generations go by without a 
better solution being found, and sometimes even reversing unless elitism is used as 
defined above. For this reason, a different measure of convergence was defined and 
employed in this research. 
 
As the routine goes through generation after generation, it should be expected that “good” 
traits would begin to emerge. Furthermore, many individuals in the population should 
start to possess those good traits and thus, should begin to resemble each other. This 
should appear mathematically as an emerging similarity in chromosome bit-strings, and 
should be visually observable in the bit-strings. For example, after several generations 
one may note that the sixth bit positions in the individuals’ bit-strings are now mostly 
ones, whereas the eighth bit positions may be mostly zeros.  
 
When starting such an evolutionary method, the bits should initially have a random 
distribution. When the bits become completely nonrandom (all individuals have identical 
bits), the population is identical and the method can go no further unless mutation is 
introduced. This progression from randomness to non-randomness provides a clear 
indication of the progression towards convergence. 
 
To calculate this bit-string indication of convergence, a Bit-String Affinity term is defined 
in which a calculated value of zero (0) indicates a random population whereas a 
calculated value of 100 indicates an identical population. This is determined from the 
average distance of each of the bit positions in the entire population from either one (1) or 
zero (0).  
 
Bit-String Affinity is calculated by taking an average of the first bit position value for all 
the individuals, then an average of the second bit position value for all the individuals, 
and so on for all the bits in the bit-string as defined for the optimization. For each of these 
resulting averages, the distance from either 1 or 0 is determined as that average itself if 
less than 0.5, and as 1.0 minus that average if greater than 0.5. (obviously, the distance is 
0.5 if the average is exactly 0.5). Then, these distances for each bit position are averaged 
for a total averaged distance. 
 
This calculation yields a value in a range from 0.5 if purely random to exactly zero if all 
bits are identical. This is converted by a simple transformation (see code snippet below) 
to a more-intuitive measure spanning a range from zero if purely random, to 100% Bit-
String Affinity if all individuals are identical. 
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BitAffin=0 
FOR iBitNum=1 TO iNumBits 
 AvValBit=0 
 FOR iAC=1 TO iPopultn 
   AvValBit=AvValBit+  
      val(MID$(GA$(iAC),iBitNum,1))  
   NEXT iAC 
 AvValBit=AvValBit/iPopultn     
 IF AvValBit<.5 THEN 
    BitAffin=BitAffin+AvValBit 
    ELSE 
    BitAffin=BitAffin+(1.-AvValBit) 
    END  
 next iBitNum 
BitAffin=BitAffin/iNumBits    
BitAffin=100(1.-2.*BitAffin)  

 
This Bit-String Affinity calculation is trivially simple to implement yet has been found to 
be a powerful and intuitively useful measure of convergence. This concept seems to be 
new to the field, and a journal article is being submitted detailing this concept. 
 
Bit-String Affinity has been run on numerous optimization cases using a variety of 
Evolutionary/Genetic routines. After observing the usefulness of the Bit-String Affinity 
value, it was coded as an alternative stopping criterion (stop when >98%). This has, in 
some cases, terminated execution many generations before the intended stopping point 
thus saving unneeded execution time. The best airplane that would be found had already 
been found. 
 
A final observation - the size of the population somewhat affects the initial calculated 
value of Bit-String Affinity. A fairly small population will never appear to be purely 
random (Bit-String Affinity=0) because the random fluctuations will cause averages of 
bit position values to be, not exactly 0.5 as in an infinitely-large random population, but 
values slightly under or over 0.5. In either case, the slight random distance from 0.5 is 
added to the Bit-String Affinity calculated value. This results in a value of perhaps 2-5% 
for a random population depending on the number of bits and the size of the population. 
This does not compromise the intended usage because convergence can be readily seen as 
the Bit-String Affinity goes from this small initial value to 50% or higher in a successful 
run. 

4.4 Monte Carlo Random Search 

A Monte Carlo optimization method as described in Section 2.5.6 was programmed using 
the chromosome/gene string definition detailed above. This works by randomly creating 
and analyzing thousands of different aircraft and testing for the one with the best measure 
of merit that also meets all required performance points. To simplify coding and reduce 
memory requirements, the total population desired is generated and analyzed in “gangs” 
of 500, but there is no evolutionary component to the optimization. Each gang is 
produced purely by application of random numbers to create chromosome/gene bit-
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strings, and the best of all gangs is the selected best aircraft. Typically, 20 gangs of 500 
would be created yielding a total of 10,000 individuals.  
 
Using the binary design variable definition, there are 248, or about 2.815×1014, different 
possible aircraft descriptions, so even 10,000 aircraft defined and analyzed represents 
only a small fraction of the total design space.  
 

4.5 Genetic Algorithms 

Genetic Algorithms are stochastic Evolutionary Algorithms with a close analogy to real-
world biology. Essential to a Genetic Algorithm is the selection of the parents and the 
combination of their genes to produce the next generation (crossover). Coding for 
crossover as used in this research is detailed in Section 4.3.5. Methods employed for the 
selection of “parents” are described below. 

4.5.1 Roulette Selection 

Holland52 popularized the use of Roulette Selection to determine the “lucky parents”. 
This is like the gambling device, but the sizes of the “slots” into which the random “ball” 
can fall are determined by the calculated values of the measure of merit as shown in 
figure 17 (based on actual data from a fighter optimization run conducted for this 
research). Sizes of the slots are calculated as: 
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figure 17. Roulette Selection 

 
If a penalty function method is in use to handle performance constraints, the slot size is 
based on the performance-adjusted MOM. If performance is not met, that aircraft’s slot is 
made smaller by the weighting scheme described in Section 4.3.3.  
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In the implementation used herein, the MOM sizing of the “slots” can also be weighted to 
favor the higher values of MOM, as described in Section 4.3.2. This can be used to 
prevent the randomness of the selection process from overpowering the “goodness” of a 
favorable value of the measure of merit. Roulette selection is illustrated in the following 
code snippet. 
 
SumPie=0. 
 for iAc=1 to iPopultn    
    GOSUB WT4MOM    'sets weight using linear, square, 4th or cosine 
    SumPie=SumPie+(1-WtMOM)   '1- so that high mom=large pie piece 
    next iAc 
  WholePie=SumPie 
  END IF 

. 
SumPie=0.  
  X#=RND        '0-1 random # 
  iAc=1         ' number of aircraft selected by roulette        
  WHILE SumPie<X# 
    GOSUB WT4MOM    'sets weight using linear, square, 4th or cosine 
    SumPie=SumPie+(1-WtMOM)/WholePie     
    iAc=iAc+1 
    WEND 

4.5.2 Tournament Selection (1v1) 

Tournament Selection, preferred by many recent researchers, selects four individuals at 
random. They “fight” one-vs.-one, with the superior of each pairing being allowed to 
reproduce with the other “winner”, as shown in figure 18. This can be done with or 
without replacement (see Section 4.3.4), and can include both a randomness and a MOM 
weighting as described above.  
 
As implemented herein, each “winner” pair produces two offspring by two independent 
crossover operations (not by using “leftover” genes). This creates a new population that is 
as large as the previous population. Appendice C contains a complete printout of a 
sample Tournament optimization run (limited to two generations of 10 individuals each). 
 
Tournament Selection as implemented herein can be seen in the code snippet below. 
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figure 18. Tournament Selection 

 
FOR iAc=1 TO iPopultn STEP 2   
  GOSUB FIGHTEM     '1v1 tournment – see below 
  iParent1=idum1 
  GOSUB FIGHTEM  
  iParent2=idum1 
  GOSUB Mate2       'crossover operator 
  GA$(iAc)=GA0$(0)  'set child into next generation 
  IF iAc<iPopultn THEN   'don't exceed iPopultn in GA$(iAc) 
     GOSUB Mate2  
     GA$(iAc+1)=GA$(iAc) 'second child from this pair 
     END IF 
  NEXT iAc 
. 
FIGHTEM: 
  iHope1=INT(RND*(iPopultn-1-ibGone))+1     
  iHope2=iHope1                                 'ibGone is #removed so far 
  WHILE iHope2=iHope1                    'so iHope1 not picked twice 
    iHope2=INT(RND*(iPopultn-1-ibGone))+1 
    WEND 
  IF abs(xMOM(iHope1))<abs(xMOM(iHope2)) then idum1=iHope1 _ 'winner  
                                                                             ELSE idum1=iHope2 
   RETURN 
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4.5.3 Breeder Pool Selection 

A selection scheme based on real-world biological reproduction was defined, and seems 
to be original to this research. In nature, the survival process is usually decoupled from 
the selection process. In many species, breeding selection is a fairly random event from 
among those who have survived long enough to reach the reproductive age of the species.  
 
To mimic this in an MDO routine, the population of aircraft is analyzed and stacked as to 
fitness according to their value of the selected measure of merit (MOM). A user-specified 
percentage (default 25%) of the total population is then placed into a “breeder pool”. The 
smaller the percentage used, the more “elite” the optimization becomes, favoring those 
with high values of the measure of merit but at the expense of reduced genetic diversity 
(and vice-versa). Use of 100% selection would allow all members of the parent 
generation to enter the breeder pool, essentially ignoring the MOM results and preventing 
any improvement with successive generations. 
 
Then, two individuals are randomly drawn from the breeder pool and a crossover 
operation is used to create a member of the next generation. Once an individual is in the 
breeder pool there is no further competition except for the “luck” of being selected. The 
competition has already occurred in the selection to be included in the breeding sub-
population.  
 
In nature, the individuals selected to breed still remain in the breeder pool available for 
future selection (excepting species such as Black Widow spiders). This is simulated by 
using replacement as described above. The breeder pool scheme is shown in figure 19, 
followed by a code snippet. 
 

                
 

figure 19. Breeder Pool Selection 
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FOR ix=1 TO iPopultn           'stack best to worse 
 BestMOM=BIGNUM           'initial best mom 
 FOR iAc=1 TO iPopultn       'find best remaining 
   GOSUB WT4MOM            'sets weight using linear, square, 4th or cosine 
   IF CrntMom<BestMOM THEN BestMOM=CrntMom    
   IF BestMOM=CrntMom THEN ibBest=iAc        'number of new best 
   NEXT iAc 
 IF BestMOM<BIGNUM AND BestMOM>0. THEN 
   GA$(ix)=GA0$(ibBest) 
   xMOM(ibBest)=-99       'so this one not picked again 
   ELSE 
   EXIT IF                'found all  
   END IF 
  NEXT ix 
 
FOR iAc=1 TO iPopultn     'copy selected population strings to GA0$() 
  IF iAc<=int(iPopultn*iTopPick/100) THEN 
    GA0$(iAc)=GA$(iAc)    'only lets top iTopPick % go into breeding  
    ELSE 
    GA0$(iAc)="" 
    END IF 
  GA$(iAc)="" 
  next iAc 
 
FOR iAc=1 TO iPopultn                                     'random pick from breeder pool 
  iparent1=INT(RND*(iNumMate-1))+1            ' iNumMate is number in breeder pool 
  iparent2=iparent1 
  WHILE iparent2=iparent1 
    iparent2=INT(RND*(iNumMate-1))+1 
    WEND 
  GOSUB Mate2 
  GA$(iAc)=GA0$(0) 
  NEXT iAc 

 

4.6 Evolutionary Algorithm – Best Self-Clones with Mutation 

The final Evolutionary algorithm employed in this research can not be considered a 
Genetic Algorithm because crossover is not employed. This approach, a variant of 
Evolutionary Programming as described in Section 2.5.9, is based more on the biology of 
ants. From an initial population, a best individual is found by MOM ranking, including 
application of the performance penalty method. 
 
This best individual becomes the “queen” and sole parent of the next generation. This 
next generation is created by making copies (clones) of the queen’s chromosome bit-
string and applying a high mutation rate to generate a diverse next generation. The 
mutation rate is high enough that almost every child is mutated in some way, so the entire 
design space is being reconsidered during every iteration even as the method converges.  
 
This method can be considered the ultimate in Elitism. Since the Queen alone reproduces, 
eliminating all other members of her population from reproduction, this author refers to 
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the method as the "Killer Queen". Similar methods have been used by other researchers, 
especially in Europe50. This approach is depicted in figure 20, followed by a code snippet. 
  

                      
 

figure 20. “Killer Queen” – Best Self-Clones with Mutation 
 
 

GOSUB Top10                     'finds best one and puts in TopTen$() 
FOR iAc=1 TO iPopultn       'make rest all like Queen, then mutate 
  GA$(iAc)=TOPTEN$(1)    'entire next population are copies of Queen  
  GOSUB MUTATE1           'mutates GA$(iAC), places in GA$(0) 
  GA$(iAC)=GA$(0) 
  next iAc 

 

4.7 Hybrid Methods  

The Orthogonal Steepest Descent method may find a local solution rather than a global 
optimum depending upon where it is started, and may take too long in getting to that 
optimum region. The other methods, all stochastic, offer a better hope of finding a global 
rather than local optimum but may never actually find the true best answer, and they may 
take many iterations to slightly improve the result.  
 
A hybrid method may offer the best of both, so it was coded into the RDS-Professional 
program. Any of the stochastic methods (Monte Carlo, Evolutionary, or Genetic) can be 
used for a specified number of generations or gangs, followed by an Orthogonal Steepest 
Descent “fine tuning” starting from the best result from the stochastic method. 
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4.8 Analysis Methods Used for Optimization 

The optimization methods reported herein all rely upon the well-proven RDS analysis 
modules developed by this author70. These include calculation of aerodynamics, weights, 
propulsion, sizing, range, performance, and cost. They represent a balanced collection of 
classical methods suitable for conceptual and early preliminary design and are described 
in detail in this author’s aircraft design textbook, Aircraft Design: A Conceptual 

Approach
11.  

 
Methods include component buildup for parasitic drag, leading edge suction and 
DATCOM charts for drag-due-to-lift and maximum lift, detailed empirical equations for 
weights, jet engine installation equations, propeller analysis from efficiency charts, 
industry-standard empirical cost equations, and physics-based equations for performance 
and sizing. These methods have been calibrated and tested in numerous studies71,83,85,86 

over a ten-year period, and have been found to be quite reliable for most types of aircraft. 
Altogether, these analysis modules represent approximately 20,000 lines of source code 
and are further described in the Appendices. 

4.9 Test-Case Run Matrix 

To guide in the execution of test cases, a matrix was developed defining the test-case runs 
that would be conducted, including which validation model (aircraft notional concept) 
would be employed, which MDO method would be used, and which combination of 
options would be applied. This test-case run matrix is provided in full in the Appendices. 
In all, over a hundred optimizations were run totally over a million parametric aircraft 
design cases. 
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5 DESIGN VARIABLES, AUTOMATED REDESIGN 

PROCEDURES, AND GEOMETRIC CONSTRAINTS 
 
As described in Section 2.6, an important issue for aircraft conceptual design MDO is the 
realism problem. To obtain a realistic revised design from an optimization routine, 
automated redesign procedures are required. These should approximate the changes that 
an experienced designer would make to an existing layout based on particular parametric 
revisions to the design variables. So, if some change to the parametric definition of the 
fuselage prevents the landing gear from working properly, a human designer would fix it 
– and so should the computer during MDO evaluations. Such procedures were including 
in the huge sizing optimization codes of the major aircraft companies74, but with set up 
times of nearly a month these methods do not seem feasible for conceptual-level MDO. 
 
In the context of an MDO code, automated aircraft redesign is really a set of procedures 
for revising the analysis inputs. This could be done by actually modifying, via computer 
algorithm, the 3-D CAD file defining the aircraft geometry, then extracting from that 
revised geometry the inputs needed for analysis. This would be required if CFD or 
structural FEM were being used for analysis, but is probably not needed for the analysis 
methods typical of today’s conceptual design efforts. Certainly, the analysis inputs of the 
RDS-Professional code as used herein do not require such a laborious procedure.  
 
Instead, the automated aircraft redesign methods can be applied directly to the analysis 
input file data. For example, in the classical wing aerodynamic analysis of RDS the wing 
input data include wing reference area, actual exposed wing area, aspect ratio, taper ratio, 
thickness ratio, sweep, design lift coefficient, skin roughness parameter, estimated 

laminar flow, and key airfoil data (Cl-max and leading edge parameter ∆Y). For the 
fuselage, input data include length, equivalent diameter, wetted area, aft-end upsweep 
angle, and frontal areas of any windshield or aft-facing base areas.  
 
These input data can be directly manipulated by automated aircraft redesign procedures 
of varying degrees of sophistication. In a simple implementation, wing area and fuselage 
diameter could be changed with no regard for mutual interactions. In a better 
implementation, the change in exposed wing area resulting from a change in fuselage 
width could be estimated and the input file revised. 
 
In preliminary work in this area6, this author defined a simple but reasonable set of 
procedures for such automated redesign. To improve realism, these automated redesign 
procedures have been expanded and enhanced. Even with a better set of such procedures 
this author believes that an experienced designer should always make a final layout 
following analytical optimization.  
 
A related subject – in some cases the parametric variations in design variables may yield 
an aircraft that is not acceptable for practical reasons. For large airliners such as the 
Airbus A-380, the wingspan should not exceed the available ramp space at major airports, 
limiting the A-380 to a span of 262 feet. An MDO-optimized concept with wingspan in 
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excess of this would probably be unacceptable to the customers, so some means of 
preventing the selection of such a design must be included in the optimizer. These 
geometric design constraints are in addition to the performance-based constraints 
previously discussed. 
 
Selection of the design variables and the automated aircraft redesign procedures and 
geometric constraint methods used for this research are described below. 
 

5.1  The Basic Six (or Five) Design Variables  

In prior published work (Raymer27, see also Appendices to this report), this author 
identified the six most-important variables for aircraft conceptual design optimization as: 
 

• T/W or P/W (i.e., engine size defined by ratio) 

• W/S (i.e., wing area defined by ratio) 

• Aspect Ratio 

• Taper Ratio 

• Sweep 

• Airfoil t/c  
 
These six variables include the performance-driving thrust and wing area, plus the 
parameters that define the basic wing geometry. These have at least 50 years of history 
behind them as key optimization variables, and in this author’s opinion they should be the 
foundation of any optimization method intended for aircraft conceptual design. 
 
If designing to an existing (fixed-size) engine, then engine scaling is not possible so a 
parametric variation of T/W (or P/W) is not possible, hence only five key variables 
remain. 
 
In addition to the obvious direct changes to the analysis inputs as these design variables 
are changed, the aircraft analysis inputs are further modified as follows: 
 

• Thrust and fuel flow vary by T/W or P/W 

• Wing reference area varies based on W/S 

• Wing exposed area varies based on W/S, adjusted for fuselage width cutoff 

• Tail areas vary by the 3/2 power of wing area to hold constant tail volume coefficient 

• Maximum cross-section area for wave drag calculation varies by wing area, t/c, and 
by cos(wing sweep), weighted to baseline percentage of total cross-section area††† 

• Nacelle wetted area varies by T/W 

• Wing fuel volume varies by 3/2 power of wing area 

• Airfoil Cl-max varies with t/c using empirical regression of NACA airfoils 

• Airfoil leading edge sharpness parameter (∆Y) varies with t/c  

                                                 
††† RDS uses the equivalent Sears-Haack body method to estimate supersonic wave drag, in which total 
aircraft length and maximum cross-sectional area are key inputs. This adjustment allows rapidly revising 
this drag estimate as wing geometry is changed. 
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5.2  Fuselage Fineness Ratio 

The key top-level parameter for fuselage design is the fineness ratio (f), the fuselage 
length divided by its equivalent diameter (diameter that gives the actual cross-section 
area). Numerous books such as the classic Hoerner Fluid Dynamic Drag75 indicate an 
optimum fineness ratio around 3-4 for minimizing drag in subsonic flight. However, this 
"optimal" fineness ratio assumes a constant frontal area or diameter - in other words, 
"what length minimizes total drag given a certain maximum diameter". A more important 
question for most aircraft is, "what fineness ratio minimizes drag for a given total volume 
enclosed?" 
 
In a recent study76 this author wrote a program to vary fineness ratio of a streamlined 
shape and calculate the resulting wetted surface area and the drag "form factor". This is a 
term in classical drag analysis that accounts for the pressure drags on the back of a body 
as a result of viscous separation. The product of wetted area and form factor, times a flat-
plate skin friction coefficient, gives the total drag. 
 

           
figure 21. Optimum Fuselage Fineness Ratios 

 
Results are shown in figure 21 as fineness ratio is varied with two different assumptions, 
constant frontal area (i.e., diameter), and constant volume. The results are normalized to 
1.0 to illustrate relative merit. As can be seen, the constant diameter assumption gives an 
optimum of 3-4 just as suggested by the old books and manuals. On the other hand, if 
volume is held constant then the optimum is somewhere between 6 and 8 - quite a 
different result! If an aircraft is volume-tight and is designed using the old suggested 
values of 3-4, the fuselage drag will be about 25-50% higher than possible with a fineness 
ratio of 6.0, according to this analysis. 
 
This ignores structural effects on the fuselage, which may push the multidisciplinary 
optimum solution towards a lower value. To find the true “best” fuselage fineness ratio, it 
must be included as a design variable in a multidisciplinary optimization. This was added 
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to the RDS MDO routines, with the following automatic redesign procedures employed in 
addition to the obvious input revisions to fuselage diameter and length: 
 

• To hold fuselage volume constant, diameter varies by cube root of fold/fnew  

• Tail areas vary inversely with fuselage length to maintain constant tail volume 
coefficient 

• Landing gear length is scaled to maintain tail-down angle as fuselage length changes 

• Maximum cross-section area for wave drag calculation varies by fuselage diameter as 
fineness ratio changes, weighted to baseline percentage of total cross-section area.   

 

5.3 Design Lift Coefficient (Wing) 

Another wing design parameter with great influence on the resulting aircraft is the wing 
Design Lift Coefficient (CL-design). This is used during preliminary design as a target for 
optimization of twist, camber, and airfoil shape. Selection of a high design lift coefficient 
is equivalent to selection or design of an airfoil with high camber, which provides lots of 
lift at lower speeds but also lots of drag in cruising flight.  
 
During conceptual design CL-design has often been chosen by the designer or chief 
aerodynamicist based on experience with similar aircraft. Aircraft drag during cruise will 
be minimized if the aircraft cruises at approximately its wing design lift coefficient, 
calculated by: 
 

q

S
W

=design-LC  

 
Ideally, one could select wing loading W/S to provide the desired CL-design. However, wing 
loading must often be set to a lower value (larger wing) to obtain the desired stall speed 
or takeoff/landing performance. Also, extreme values of CL-design provide poor values of 
airfoil lift-to-drag ratio. Since CL-design has an effect on maximum lift, it and W/S should 
be determined together.  
 
Thus, CL-design was added as the eighth variable in the RDS MDO routines. In addition to 
simply changing its value in the aerodynamic analysis inputs, the following effects were 
included: 
 

• Airfoil leading edge sharpness parameter (∆Y) varies with design Cl via camber 
geometric approximation 

• Airfoil Cl-max varies with design Cl using new empirical regression of data for 
several NACA airfoils77 (which also includes variation with t/c)  

5.4 Geometric Design Constraints  

Geometric design constraints were added to the RDS MDO routines to permit searching 
for an optimal design with certain real-world requirements considered. These are treated 
in the optimization as additional performance constraints. Violations of them, like 
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missing a takeoff distance requirement, are handled by multiplication of the calculated 
value of the measure of merit by the current value of the scalar penalty factor.  

5.4.1 Fuselage Length and Diameter 

Fuselage length and diameter limits can be input by the user at the initialization of the 
optimization. The length limit is an upper limit, often required in the design of military 
aircraft to ensure that the aircraft will fit in hardened shelters and on aircraft carriers.  
 
The fuselage diameter limit serves as a lower limit. This prevents the optimization from 
making the fuselage smaller in cross-section than necessary to hold passengers, payload, 
or equipment as determined in the baseline configuration drawing. 

5.4.2 Wingspan  

The wingspan limit is an upper limit, based on a value input by the user, and mostly 
applied to large commercial transports to ensure usability of existing airport taxiways and 
gates. For military aircraft, span is constrained to allow the aircraft to fit in hardened 
shelters and on aircraft carriers. During conceptual design for the project that became the 
F-22, one thing that was known early was that the wingspan could not exceed that of the 
F-15, for just that reason. 

5.4.3 Wing Geometry for Pitchup Avoidance 

For a tailless aircraft or one with a tail positioned such that its effectiveness may be 
degraded at high angle of attack, it is important to avoid certain combinations of high 
aspect ratio and high sweep. Otherwise, near the stall the outflow from the high sweep 
will cause the tips to lose lift first. Due to the high aspect ratio this lost lift is located 
behind the center of gravity causing pitchup – an uncontrollable nose-up divergence 
leading to stall and spin. 
 
A widely used pitchup avoidance criterion was detailed in NACA 1093 (see Raymer11). 
This gives a chart based on extensive wind tunnel testing that provides threshold curves 
of acceptable combinations of aspect ratio and sweep. Data for maximum allowed aspect 
ratio (A) were curve-fit for subsonic and transonic flight based on wing quarter-chord 

sweep (∆QC), resulting in the following constraint equations:  
 

Subsonic: Amax=10.(1.047-0.552*tan(∆
QC

)) 
 
 

Transonic: Amax=10.(0.842-0.435*tan((∆
QC

))        
 
These equations were added to the RDS MDO routines as an optional geometric 
constraint option. During optimization, the appropriate equation is used to calculate the 
maximum allowable aspect ratio for the design’s wing sweep. If that value is exceeded, 
the design is penalized in the same manner as an airplane missing a performance 
requirement, as described above. 
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5.5  Net Design Volume 

The final geometric design constraint option added to the RDS MDO routines is intended 
to ensure that an optimization that makes the wing substantially smaller does not result in 
an aircraft that cannot hold its required fuel and internal equipment. This is done with the 
aid of a parameter called Net Design Volume (NDV). 
 

Net Design Volume was defined by this author (Raymer78) as the internal volume of an 
aircraft less the volume dedicated to fuel, propulsion, and payload (including passengers 
and crew). NDV represents the volume available for everything else, including items that 
are not precisely known until well into the design process such as structural components, 
avionics, systems, equipment, landing gear, routing, and access provisions. Therefore, 
NDV can be used to assure that a design layout has a credible geometry such that the 
design, when finalized, will contain all required components without requiring 
excessively tight packaging, which can lead to fabrication and maintenance difficulties. 
Furthermore, NDV assessment can be used as a constraint in MDO optimization to help 
improve the design realism of the resulting optimized configuration. 
 
In conceptual design, a layout is prepared that shows the overall aerodynamic 
configuration including fuselage, wings, tails, and the like, and also shows the major 
internal items such as the engine, landing gear, fuel tanks, avionics, and the payload, 
passenger compartment, and crew station. This drawing cannot and does not show every 
item that will be in the final, as-built aircraft. Many items are simply too small to worry 
about in the initial layout process, although taken together they add up to substantial 
volume. Often, internal components have yet to be designed, and will not be designed 
until the later "detail design" phase. Examples include the actual aircraft structure, 
equipment items such as actuators and environmental control, and the ducting and wiring 
that pass throughout the aircraft.  
 
An experienced aircraft designer knows to provide a generous amount of "un-spoken-for" 
volume in the aircraft, spaced properly throughout the aircraft. The correct amount of 
extra space just "looks right". Such an intuitive measure of merit is difficult to duplicate 
or teach, and impossible to program. For this reason, attempts have been made to provide 
an analytical evaluation of the "right" amount of extra volume. Over 30 years ago, 
Cadell79 looked at a volumetric density evaluation to determine a reasonable volume 
allocation.  
 
More recently, O'Brimski80 reviewed the volumetric density of fighter-type aircraft and 
determined a practical limit on total aircraft density to assist in evaluation of aircraft 
proposed to the US Navy. His methodology was simple, based on a graph similar to 
figure 22 of aircraft total internal volume (excluding inlet duct) versus takeoff weight 
with full internal fuel and load. The actual graph has distribution restrictions, but overall 
his data indicates a maximum practical density ranging from about 33 lb/ft3 for small 
fighters to 31.5 lb/ft3 for larger fighters.  
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figure 22. Traditional Volumetric Density Graph 

 
This methodology is suitable for analysis of aircraft proposals but less useful for 
conceptual design optimization purposes, for two reasons. First, it is based on detailed 
evaluation of the actual volume plot of the completed design, which is not normally 
available for each alternative of a parametric study. Second, it is insensitive to some of 
the likely optimization variables. For example, a jet engine with higher bypass ratio 
occupies more volume, requiring an increase in fuselage size when the concept is 
properly drawn. Such an engine burns less fuel, reducing the volume required. These 
would not be addressed by this earlier method.  

5.5.1 Definition Of Net Design Volume 

Net Design Volume is a design metric developed to provide a similar, simple method of 
ascertaining design realism, with enough extra detail to account for the differences 
between different aircraft and between parametric variations of a design undergoing 
optimization.  
 
Net Design Volume is defined as the internal volume of an aircraft fuselage, nacelles, and 
wings, less the volume dedicated to fuel, propulsion, payload, passengers, and crew. NDV 
more closely represents this "un-spoken-for" extra volume that the designer knows will 
provide enough space for everything else, including aircraft structure and undefined items 
such as avionics, systems, equipment, landing gear, routing, and access provisions. 
Volume of the tails and pylons are not included because those items rarely provide usable 
volume (although some aircraft do put fuel in the tails). Also, tightly packed separate 
podded nacelles have no extra volume beyond that used for propulsion, and so separate 
nacelles are excluded from the evaluation of NDV. 
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Internal weapons bays, not addressed in figure 22, are accounted for in NDV by the 
subtraction of that internal volume. This makes it easier to compare designs with and 
without such bays, such as modern stealth fighters. 

 
From NDV, a density is then calculated based on the weights associated with the NDV 
areas. Basically, this Wndv is the empty weight less fuel and engine weight. Since tails, 
pylons, and separate podded nacelles are excluded from NDV, their weights are removed. 
Definition of fuel and payload are not required because both are excluded from NDV. 
 
The proper calculation of NDV would use a detailed aircraft volume plot. This would be a 
suitable approach for evaluation of a conceptual design layout in industry or government 
design offices. For NDV to be a usable tool in MDO computer programs, a simpler 
method of calculating NDV is required, provided that it still provided a reasonable 
approximation of the effects of parametric variations in design concept.  
 
A simplified volumetric calculation was defined as follows. Fuselage volume was 
estimated using three segments. The nose was assumed to be ellipsoidal in cross-section 
and planview, with length equal to 1.5 times height (2.5 for supersonic designs). A 
constant-section center section was assumed, based on a tail length defined as 2.5 times 
height, or 60% of length for supersonic designs. The tail was defined as an ellipsoidal 
shape unless the back is cut off as for a rear-mounted engine, in which case a straight 
taper was assumed. This is illustrated in figure 23, with a code snippet below. 
 

 
figure 23.  Fuselage and Wing Volume Estimates 
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IF ibsuper=1 THEN            
  LN=2.5*Htfus 
  LT=.6*LENGTH 
  IF LN>.4*LENGTH THEN LN=.4*LENGTH 
  ELSE 
  LN=1.5*Htfus 
  LT=2.5*Htfus 
  IF LN+LT>LENGTH THEN LN=LENGTH-LT 
  END IF 
Amax=Xcirc*Wdfus*Htfus/4. 
Aeng=NumEng*3.14*Deng*Deng/4.         
Vfus=(.48*Amax*LN) + (Length-LT-LN)*Amax 
IF ibackeng=0 THEN   'tapered tailcone 
   Vaft=0.48*Amax*LT 
   ELSE 
   Vaft=0.33*LT*(Amax+Aeng+SQR(Amax*Aeng)) 
   END IF 
Vfus=Vfus+Vaft 

 
Wing volume was estimated by determining the areas of the tip airfoil and the airfoil at 
the root, where the wing meets the fuselage (not the theoretical root at the center of the 
airplane). Airfoil area, based on geometric data for a number of NACA sections, was 
approximated as 0.67 times the chord length and thickness. Volume was determined by 
integration assuming a straight taper between these end airfoils (see code snippet). 
 
Croot=2.*Swing/(span*(1.+taper)) 
Ctip=taper*Croot 
Cside=Croot*(1-Wdfus/Span) + Ctip*Wdfus/Span 
Sside=.67 * ToverC * Cside*Cside      
Stip =.67 * ToverC * Ctip *Ctip 
Vwing=0.333*(Span-Wdfus)*(Sside+Stip+SQR(Sside*Stip)) 

 
Propulsion volume for an internal jet engine was estimated from the engine diameter and 
length, and the inlet length. The engine front face diameter is typically about 80% of 
engine maximum diameter, and is the diameter of the back of the inlet. Thus, the area of 
the back of the inlet is roughly 0.64 times engine maximum area. To account for 
expansion of the inlet from front to back, this factor was reduced to 0.6 and used to 
estimate inlet volume.  
 
Volumes of the payload (including internal weapons bays), passenger compartment, and 
crew compartment were directly assessed by measurement off design layouts. Fuel 
volume was estimated from fuel weight, applying standard fuel density values and an 
appropriate installation factor (88% installation factor was assumed). 
 
To evaluate whether this definition of Net Design Volume and the approximate 
volumetric analysis as outlined above have validity for actual aircraft, seven 
representative modern fighter aircraft were subjected to comparative regression analysis 
using the author’s least-squares multivariable nonlinear regression program (see 
Raymer78).  
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The selected aircraft are as follows: 
• F-15A 
• F-16A 
• F-18A 
• Gripen 
• Rafale 
• Typhoon 
• F-22 

 
These aircraft were modeled using data from Jane's All the World's Aircraft

81, Aviation 

Week and Space Technology weekly magazine (various issues), and miscellaneous other 
sources, as detailed in Raymer78. The earliest versions of these aircraft were deliberately 
used under the assumption that these are closest to the original design layout and hence 
are most representative of the original designers' definition of "un-spoken-for" volume. A 
concept that was designed with substantial unused growth volume would violate this 
assumption. The F-15A, which seems low in density in the following analysis, is known 
to have been designed with substantial growth in mind, including unused internal volume.  
 
The data indicate that the average NDV density (Wndv / NDV) equals about 34 pounds per 
cubic foot. Compared to data in O’Brimski80, this NDV density is a bit greater than the 
broader density measure of volume less inlet duct. This is possibly due to the elimination 
of canopy and tails from NDV, both of which are less dense than the rest of the aircraft 
(canopy being full of air). 
 

      
figure 24. NDV Regression and Ratio Trendline Comparison 

 
Regression analysis created the curves illustrated in figure 24, which show weight versus 
calculated value of Net Design Volume as described above. Weights are shown three 
ways – total takeoff weight (W0), empty weight (We), and Net Design Volume weight 
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(Wndv). As discussed above, Net Design Volume weight excludes fuel and engine weight 
as well as tails, pylons, and separate podded nacelles.  
 
Regression analysis indicated that Wndv does closely predict NDV in spite of the 
simplifications employed. Also, Wndv provides the best fit to estimate NDV with a 
correlation coefficient of 0.980. Using We to estimate NDV yields a coefficient of 0.971, 
while using W0 gives a value of 0.959. 
 
Simple ratio trendlines can also be seen in figure 24, showing that the regression results 
are very similar to the ratio trendlines. Also, the NDV density is seen to slightly decrease 
with increasing aircraft weight versus the constant-density trendlines (dotted). This seems 
odd, and this author would have expected the opposite, but the same result was seen in 
the trendline in O’Brimski80. 
 
In defining NDV, the treatment of avionics volume was of concern. Ultimately it was 
decided to include avionics in NDV (in other words, not attempt to subtract out avionics 
volume and weights). Certainly the opposite could have been done, because the avionics 
volumes and weights are included on the first design layouts. It was decided to include 
avionics in NDV to simplify the workload, and because, with an average avionics density 
of 30-45 lb/ft3, avionics has about the same density as our estimated NDV. Thus, it can be 
included or not with little change in result. This may not be true for other classes of 
aircraft, but for them the total avionics weight is rarely as substantial a fraction of We as 
for fighters. 

5.5.2 Use Of Net Design Volume For MDO 

NDV can be used to evaluate a just-completed aircraft configuration layout for historical 
reasonableness, as was the intention of O’Brimski80. Another usage, and a key objective 
of this study, is as a constraint factor in multidisciplinary design optimization (MDO). 
 
NDV was applied to the RDS MDO routines to automatically "correct" the design 
geometry resulting from every parametric variation of the baseline, using the following 
steps: 
 

• Calculate NDV density target from analysis of the baseline design layout prior to 
start of optimization 

• During MDO optimization, analyze each design perturbation for NDV density  

• Modify fuselage analysis inputs to photographically scale it in all directions to 
restore the target NDV density 

• Scale landing gear length for new fuselage length 

• Revise tail areas for new fuselage length 

• Perform aircraft analysis and sizing 

• Check other geometric constraints for violation (such as fuselage diameter too 
small) 

 
This application of NDV as a geometric design constraint entails a three-step process as 
suggested by figure 25. First, the parametric changes are made to design variables such as 
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sweep, taper ratio, or in this case, wing loading (wing gets smaller). Second, the Net 

Design Volume is calculated and compared to the baseline value, and the fuselage is 
revised to hold it constant. In this case, the smaller wing requires a fuselage stretch to 
provide the same Net Design Volume, assuming that required fuel in the wing gets pushed 
into the fuselage. Finally, the revised design is analyzed and resized to the mission, and 
those results are used in the optimizer. 

           
figure 25. Three-Step Process for Use of Net Design Volume 

 
Net Design Volume is never used as a penalty function in the optimization, because it is 
always corrected prior to the analysis. The “penalty” is in what may be an excess fuselage 
size to attain the required NDV density, so it is already included in the calculation of the 
MOM and does not need to be further included as a penalty function multiplier. 
 
This use of Net Design Volume may not be appropriate for some classes of aircraft. A 
general aviation aircraft it usually not volume-tight the way a fighter, bomber, or large 
airliner is. With an aircraft that is not volume-tight, there may be enough room in the 
wing for all the required fuel even if the wing is made smaller. In such a case, the hold of 
Net Design Volume should be turned off.  
 
To avoid excessive fuselage “shrinkage” in the case of a large wing, a limit of 75% 
scaling of fuselage length was included in the method. It is also possible to specify that 
the fuselage can be made larger to maintain NDV density, but it should not be made any 
smaller even if the wing can carry more of the fuel. Often the designer has already made 
the fuselage as small as is practical even if some fuel can be moved to the wing.   
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5.6 Automated Redesign for Discrete Variables 

More difficult to obtain are redesign procedures for the “discrete” variables, those that 
have only integer values such as number of engines or number of aisles and seats across. 
It was intended in this research to define automated procedures for aircraft redesign for 
use in MDO routines, but it quickly became apparent that any such procedures would be 
design-specific and limited to a single class of aircraft. Any routine capable of modifying 
a propeller-powered canard-pusher aircraft from single to twin engines would be useless 
for a design trade in which a twin-engine F-15-like fighter were to be studied with a 
single engine. 
 
Similarly, an automated redesign procedure that would modify an Airbus-like transport 
from seven seats across to eight seats across would probably be inaccurate if applied to a 
corporate jet in which a study of three- vs. two-across seating were to be made.  
 
To incorporate optimization of discrete variables into a general-purpose aircraft design 
program such as RDS-Professional would require a large number of alternative routines, 
one for each class and type of aircraft, and would still never be trustworthy for use in a 
type of aircraft not already considered. This is contrary to the philosophy employed in the 
rest of the RDS-Professional program and so was abandoned for now. 
 
Traditionally these discrete variable design optimizations have been done by design trade 
studies in which an experienced configuration designer produced a new design layout 
incorporating the alternative selection. This will probably remain the best way to treat 
these discrete variables, although an organization doing numerous optimizations on 
similar designs may find it useful to code specific automated redesign procedures for the 
studies that they do often.  
 
An alternative means of dealing with discrete variables in MDO is to have numerous 
quick layout studies done by experienced designers, then distill the results to numerical 
relationships via Response Surfaces and apply them to an MDO routine. Here, the 
question becomes – how well can designers do such alternative concepts in the limited 
amount of time available per concept? 
 
The old approach – actually designing and analyzing alternative design concepts – is 
really not so bad. Each alternative concept can be designed and optimized separately, and 
the best of the best selected as the optimum design. However, the workload goes up 
exponentially as more discrete-variable trades are included. 
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6 NOTIONAL AIRCRAFT CONCEPTS 
 
To evaluate MDO codes for aircraft conceptual design, realistic samples of aircraft 
conceptual designs are required. One option would have been the use of data from actual 
aircraft, modeled as if they were in the conceptual design phase. This is problematic for 
several reasons. First, any attempt to reverse-engineer an actual aircraft and then perform 
MDO can have only two outcomes. One possibility is that the MDO finds no better of a 
design, in which case you were not able to fully exercise the MDO because the design 
was already optimal (assuming the code is working). Even worse, you may find a “better” 
design and thereby lower your own credibility or offend those who designed it in the first 
place, or both. 
 
A more serious problem, though, is that in many cases it is difficult to determine the 
actual design mission and requirements of an aircraft previously designed. Such data is 
buried in company archives, and those who actually did the conceptual design are often 
unavailable. A design that was well optimized to one set of requirements would appear 
poorly done if evaluated to a different set of requirements. Without company data on both 
the initial requirements and the resulting design, the use of a “home-grown” model of an 
existing aircraft may be more misleading than helpful. 
 
Instead, four new notional designs were developed for this research by this author. While 
not as fully developed as would be done for an actual design project, they were designed 
with reasonable concern for design realism and were developed and analyzed using the 
same methods and software that this author uses in his professional design contracts. 
Design requirements were defined by this author based on experience in similar projects. 

6.1.1 Advanced Multirole Export Fighter  

A single-engine multirole fighter was designed as an F-16 replacement for the USAF and 
as an export fighter for a worldwide market. It is an outgrowth of design approaches 
developed during the author’s prior work for several corporations studying next-
generation fighters (Raymer82,83,84) and further addressed in company studies of advanced 
carrier-based STOVL fighters (Raymer85). The actual design concept as shown below 
was specifically developed during this research as a test case for MDO (as were all of 
these concepts). 
 
This aircraft has an as-drawn takeoff gross weight (Wo) of 45,000 lbs {20,412 kg} and an 
empty weight of 23,870 lbs {10,827 kg}, attaining a subsonic combat radius of about 850 
nmi {1574 km} dropping two 1,000 lbs {454kg} weapons. The design has a length of 54 
ft {16.5 m} and a span of 38.4 ft {11.7 m}, with a wing loading of 76.3 psf {372 kgsm} 
and aspect ratio of 2.5. It uses a single advanced technology afterburning turbofan of 
32,000 lbs thrust {142 kN}. 
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figure 26. Advanced Multirole Export Fighter 

 
 

figure 27. Advanced Fighter - Estimated L/D 

 
Estimated aerodynamic results are summarized in figure 27 showing lift-to-drag ratios 
(L/D) in level flight. Weights estimates are tabulated below. Payload includes two 1,000-
lb air-to-surface weapons {454 kg} and two air-to-air missiles. 
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                         Lbs     Kg 

STRUCTURES GROUP      10229.5  4640.0 

  Wing                 3089.7  1401.4 

  Vert. Tail            866.5   393.0 

  Fuselage             4627.6  2099.0 

  Main Lndg Gear        775.1   351.6 

  Nose Lndg Gear        318.1   144.3 

  Engine Mounts          63.3    28.7 

  Firewall              113.0    51.3 

  Engine Section         53.3    24.2 

  Air Induction         322.9   146.5 

PROPULSION GROUP       6355.3  2882.7 

  Engine(s)            4930.0  2236.2 

  Engine Cooling        273.0   123.8 

  Oil Cooling            37.8    17.2 

  Engine Controls        21.2     9.6 

  Starter                66.4    30.1 

  Fuel System          1027.0   465.8 

EQUIPMENT GROUP        4484.8  2034.3 

  Flight Controls      1020.8   463.0 

  Instruments           128.8    58.4 

  Hydraulics            171.7    77.9 

  Electrical            706.5   320.5 

  Avionics             1579.8   716.6 

  Furnishings           391.7   177.7 

  Air Conditioning      464.7   210.8 

  Handling Gear          20.7     9.4 

 MISC EMPTY WEIGHT     2800.0  1270.1 

TOTAL WEIGHT EMPTY    23869.6 10827.1 

USEFUL LOAD GROUP     21130.4  9584.6 

  Crew                  220.0    99.8 

  Fuel                18000.4  8164.8 

  Oil                    50.0    22.7 

  Payload              2860.0  1297.3 

TAKEOFF GROSS WEIGHT  45000.0 20411.6 

Design Gross Weight   36000.0 16329.3 

 
figure 28. Advanced Fighter - Weights Estimates 

 
As a design sample, this notional fighter offers a suitably complicated problem for sizing 
and performance analysis, with 13 mission segments and 6 must-meet performance 
points. The design mission is an out-and-back tactical attack mission, with a best-speed 
cruise at 40,000 ft {12,192 m} of 800 nmi {1482 km} each way. At mid-mission, a 50 
nmi {93km} dash at 500 kts is done, the two attack weapons are dropped, and a three-
turn maximum-afterburner combat is performed. Performance requirements include a 20 
deg/sec corner speed turn at 15,000 ft {4572 m}, a sustained turn at 5 g’s at Mach .8 and 
15,000 ft {4572 m}, dash speed of M1.6 at 30,000 ft {9144 m}, and an acceleration from 
M.6 to M1 at 15,000 ft {4572 m} in 30 seconds. Takeoff and landing must be within 
2000 ft {610 m}.  
 
Optimization for this fighter concept was done using Purchase Price as the Measure of 
Merit, as estimated by the DAPCA equations described in the Appendices, Section 9.2.5. 
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The as-drawn baseline design has an estimated price of $34.7m, but does not yet meet all 
performance and range requirements.  
 
Optimization using the traditional carpet plot technique is shown in figure 29. The shaded 
area represents the “feasible” region where all constraints are met. Increasing price is 
towards the top of the plot, so the best aircraft is found as the lowest point of the feasible 
region, which corresponds to a T/W of 0.72 and W/S of 70, with a purchase price (MOM) 
of $38.5 million. A separate calculation indicated that this optimum aircraft has a takeoff 
gross weight of 44,500 lbs {20,185 kg}, slightly below the as-drawn weight, when sized 
to the design mission using these performance-constrained optimal design parameters. 
 

 
figure 29. Advanced Fighter - Carpet Plot Optimization 

 
This classical optimization considered only two variables. A key question for this 
research is, “Would consideration of more design variables offer further improvements, 
and if so, which MDO methods are most efficient for such multivariable optimization?” 
Such results are presented in Section 7, below. 

6.1.2 Civil Transport 

A commercial transport intended to be reminiscent of the Airbus A321 was developed 
using published Airbus data and information from an analysis model previously used at 
KTH. Shown in figure 30, this concept is a twin-engine, single aisle design with a 13 foot 
wide {4m} diameter fuselage. It has an as-drawn takeoff gross weight (Wo) of 213,844 
lbs {96,998 kg} and an empty weight of 114,210 lbs {51,804 kg}. It attains a range of 
about 3300 nmi {6112 km} plus reserves, carrying 188 passengers. The design has a 
length of 146 ft {44.5 m} and a span of 130 ft {40 m}, with a wing aspect ratio of 10.13 
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and an area of 1672 sqft {155 sqm}. Design requirements are typical for commercial 
transports and include takeoff and landing distances and various climb conditions, some 
with gear and flaps down.  
 

  
 

figure 30. Civil Transport  

 
Engines were approximated by an existing commercial turbofan data set, adjusted to 
approximate the characteristics of the CFM-56 per data in Janes81. Nominal thrust per 
engine is 36,800 lbs {164 kN}. 
 
As a deliberate test of the MDO routines, a badly optimized version of this commercial 
airliner was designed as shown in figure 31. The various MDO routines were tested for 
their ability to start from such a poorly-conceived design baseline and find a “normal”, 
presumably optimal design. Specifically, the wing planform parameters were changed to 
values vastly different from the usual practice for jet airliners. Wing loading was changed 
from 128 to 107 psf {624 to 521 kgsm}, wing aspect ratio was changed from 10.13 to 5, 
and wing sweep was changed from 29 to 40 degrees. Such a wing is typical for an early 
jet fighter, not a transport! 
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figure 31. “Bad” Civil Transport 

 
Lift-to-drag ratios of both designs are shown below, indicating the poorness of the choice 
of wing design parameters for the “bad” design. It has a best L/D of only 15 compared 
with the “good” design’s value of nearly 19, a 25% difference (recall that range is 
directly proportional to L/D). Weights estimates for the “good” design follow. 
 

 
 

figure 32. “Good” Civil Transport - Estimated L/D 
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figure 33. “Bad” Civil Transport - Estimated L/D 
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STRUCTURES GROUP      58734.0  26641.3 

  Wing                21519.3   9761.0 

  Horiz. Tail           757.5    343.6 

  Vert. Tail           2833.9   1285.4 

  Fuselage            21957.5   9959.7 

  Main Lndg Gear       6600.8   2994.1 

  Nose Lndg Gear       1214.0    550.7 

  Nacelle Group        3851.2   1746.9 

PROPULSION GROUP      17461.4   7920.3 

  Engine(s)           16755.1   7600.0 

  Engine Controls        45.2     20.5 

  Starter               226.0    102.5 

  Fuel System           435.0    197.3 

EQUIPMENT GROUP       13102.7   5943.3 

  Flight Controls      2997.7   1359.7 

  Instruments           205.8     93.4 

  Hydraulics            279.0    126.5 

  Electrical           2834.8   1285.9 

  Avionics             2025.2    918.6 

  Furnishings          1570.4    712.3 

  Air Conditioning     2167.8    983.3 

  Anti Ice              427.7    194.0 

  Handling Gear          64.2     29.1 

  APU installed         530.2    240.5 

 MISC EMPTY WEIGHT    24912.3  11300.0 

TOTAL WEIGHT EMPTY   114210.3  51804.9 

USEFUL LOAD GROUP     99633.8  45193.1 

  Crew                 1440.0    653.2 

  Fuel                65683.6  29793.6 

  Oil                   110.2     50.0 

  Passengers          32400.0  14696.4 

TAKEOFF GROSS WEIGHT 213844.2  96998.0 

 
figure 34. “Good” Civil Transport - Weights Estimates 

 
Classical carpet plot optimizations of these two designs are shown below. For the “good” 
design, an optimized takeoff gross weight of 193,000 lbs {87,643 kg} is found at the 
intersection of two performance requirements – takeoff distance and engine-out rate of 
climb. 
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figure 35. “Good” Transport - Carpet Plot Optimization 

 

 
figure 36. “Bad” Transport - Carpet Plot Optimization 
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In this two-variable optimization, only the wing loading of the “bad” design can be fixed. 
The aspect ratio and sweep remain unchanged here, so the optimized “bad” design shown 
in figure 36 is still worse than the other design (220,462 lbs, or 100,000 kg). This occurs 
with a wing loading of 96 psf {469 kgsm} and a T/W of 0.365. Notice that even with 
optimization it is still incapable of meeting one of the performance requirements, an 
engine-out rate of climb condition  (labeled “None Meet”). 

6.1.3 Asymmetric Light Twin 

This aircraft is based on a novel variant of the concept of asymmetric design, with the 
objective of providing twin-engine redundancy without the engine-out controllability 
problems common to traditional designs.  
 
Most twins have the engines so far apart that the loss of an engine at low speeds will 
result in a loss of control - the running engine will drag the aircraft over on its back or 
into a spin. P-effect makes this worse‡‡‡.  
 
In the 1930’s, the Blohm-Voss Bv-141 was designed with the main fuselage (including 
the engine) offset to the left so that the pilot and gunner could be placed in a pod to the 
right, giving excellent visibility for both. Since the propeller was offset to the left, the 
yawing moment during climb was cancelled. More recently E. Rutan developed the 
asymmetric, twin-engined Boomerang, with a single fuselage with an engine in front, 
plus a second engine added alongside in a smaller engine nacelle which extends rearward 
to the horizontal tail. This configuration reduces the P-effect because the engines are 
placed close to the aircraft centerline.  
 
Several years ago this author conceived of a variation on this asymmetric design 
philosophy which is a bit more “normal-looking” and which directly addresses the P-
effect. This starts with a single-engine aircraft concept much like a low-wing Piper, 
which is morphed to an asymmetric twin by the addition of a second engine on the right 
wing in a pusher nacelle arrangement. To provide lateral balance, the main fuselage is 
moved to the left of the wing centerline. This has several beneficial effects. The front 
engine’s P-effect is cancelled by its displacement to the left of center – the downward-
moving blade is nearer to the wing centerline. The pusher engine, if the engine has the 
usual rotation direction, also has its downward-moving blade near the wing centerline so 
its P-effect is also cancelled. The wing is left-right symmetric providing normal lateral 
handling qualities, as is the horizontal tail.  
 
A design was developed for this research using this concept, as shown in figure 37. This 
is intended as a homebuilt carrying 2 people with a jumpseat for a third. It is designed 
around two Jabiru 3300cc, 6-cylinder aircraft engines of 100 hp {75 kW}, based on data 
from the engine company’s web site. A 2-bladed prop was used for thrust analysis. 
 

                                                 
‡‡‡ P-effect is the yawing moment experienced by propellers when operated at an angle of attack, as during 
a climb. It is caused by the increased forward velocity and angle of attack of the downward moving blade, 
which therefore generates more thrust.  
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This strange-looking aircraft (it grows on you) has an as-drawn takeoff gross weight of 
2200 lbs {998 kg} and an empty weight of 1413 lbs {641 kg}. It is 20 ft long {7 m} and 
has a span of 29 ft {8.8 m}. Wing area is 85 sqft {7.9 sqm}, and aspect ratio is 10. 

          
 

figure 37. Asymmetric Light Twin  

 
Although the design is unusual looking, it can be modeled for analysis and optimization 
with the same parameters as a normal aircraft because the wing is symmetric about the 
true aircraft centerline. The fuselage, while offset, can be evaluated for drag as a normal 
fuselage. Weights were adjusted to include the extra engine and nacelle. Aerodynamic 
and weights results are presented below. 
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figure 38. Light Twin - Estimated L/D 

 
STRUCTURES GROUP        550.9   249.9 

  Wing                  186.5    84.6 

  Horiz. Tail            25.3    11.5 

  Vert. Tail             19.5     8.8 

  Fuselage              202.9    92.0 

  Main Lndg Gear         91.4    41.5 

  Nose Lndg Gear         25.4    11.5 

PROPULSION GROUP        607.7   275.7 

  Engine(s)             322.0   146.1 

  Eng Installation      235.8   107.0 

  Fuel System            49.9    22.6 

EQUIPMENT GROUP         179.0    81.2 

  Flight Controls        23.0    10.4 

  Electrical             63.3    28.7 

  Avionics               42.7    19.3 

 MISC EMPTY WEIGHT       75.0    34.0 

TOTAL WEIGHT EMPTY     1412.6   640.8 

USEFUL LOAD GROUP       787.4   357.1 

  Crew                  400.0   181.4 

  Fuel                  327.4   148.5 

  Oil                    20.0     9.1 

  Payload                40.0    18.1 

TAKEOFF GROSS WEIGHT   2200.0   997.9 

 
figure 39. Light Twin - Weights Estimate 
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As with the last concept, the carpet plot optimization cannot be done with T/W and W/S 
so we use W/S and aspect ratio instead. In figure 40, the optimum aircraft is not found 
where two constraint lines intersect. Instead, one constraint line (rate of climb) forms a 
“bucket” and the optimum aircraft is found at its bottom. Its takeoff gross weight is 2180 
lbs {989 kg}, found with wing loading of 25 and aspect ratio of 9.8. 
 

 
figure 40. Light Twin - Carpet Plot Optimization 

6.1.4 Tactical UAV 

Tactical Unmanned Air Vehicles (UAV’s), those with bomb dropping or missile firing 
capabilities, are emerging as potent new weapon systems. The Predator, armed with small 
missiles, was recently used in combat for the first time. Several new tactical UAV’s are 
now in development.  
 
This author conducted design studies on Unmanned Air Vehicles in the mid-1990’s 
(Raymer86), and later developed a novel concept for a stealthy, low-profile inlet duct for a 
UAV (illustrated in the third edition of Raymer11). This later work was used as the basis 
for development of the notional design concept illustrated in figure 41. A highly-swept 
flying wing, its intended mission is ground attack using a single 1,000 lb {454kg} “smart 
bomb”. 
 
As-drawn takeoff gross weight (Wo) of this notional UAV is 7,250 lbs {3,289 kg} with an 
empty weight of 4,157 lbs {1,886 kg}. Combat radius is 750 nmi {2778 km}. Length is 
30 ft {9 m} with span of 36 ft {11 m}.  Wing aspect ratio is 2.2 and the wing is highly 
swept – 60 degrees. The engine is an approximated version of the widely used JT-15D, of 
2900 lbs thrust {12.9 kN}. L/D ratios are shown in figure 42. 
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figure 41. Tactical UAV 

 
 

figure 42. Tactical UAV - Estimated L/D 
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UAV weights estimates are provided below, based on attack fighter weights adjusted to 
reflect the unmanned aspects of the design. Suitable miscellaneous allocations were also 
made for low-observables treatments and an internal weapons bay. 
 

STRUCTURES GROUP       1235.9    560.6 

  Wing                  713.4    323.6 

  Vert. Tail             65.2     29.6 

  Fuselage              110.6     50.2 

  Main Lndg Gear        248.1    112.6 

  Nose Lndg Gear         73.2     33.2 

  Engine Mounts           7.9      3.6 

  Firewall               11.3      5.1 

  Engine Section          6.1      2.8 

PROPULSION GROUP        736.4    334.0 

  Engine(s)             632.0    286.7 

  Oil Cooling            37.8     17.2 

  Engine Controls        18.6      8.4 

  Starter                10.7      4.9 

  Fuel System            37.3     16.9 

EQUIPMENT GROUP        1286.9    583.7 

  Flight Controls       180.2     81.8 

  Instruments           100.9     45.8 

  Hydraulics            108.4     49.2 

  Electrical            208.3     94.5 

  Avionics              567.9    257.6 

  Air Conditioning      121.1     54.9 

 MISC EMPTY WEIGHT      898.0    407.3 

TOTAL WEIGHT EMPTY     4157.2   1885.7 

USEFUL LOAD GROUP      3092.8   1402.9 

  Fuel                 2072.8    940.2 

  Oil                    20.0      9.1 

  Payload              1000.0    453.6 

TAKEOFF GROSS WEIGHT   7250.0   3288.5 

 
figure 43. Tactical UAV - Weights Estimates 

 
Classical carpet plot optimization of this UAV is shown in figure 44. The carpet plot 
optimization cannot be done with the usual two variables, T/W and W/S, because the 
aircraft is designed and optimized assuming a fixed-size engine, the JT-15D. For the 
designs presented above, it was assumed that the engines could be scaled to provide 
whatever thrust level was required, and if that meant a new engine had to be built, we 
built it. For this and the next design, it is assumed that we must pick and use an existing 
engine. Thus, T/W cannot be defined parametrically to a specified value because the 
engine thrust is fixed. As aircraft weight changes, T/W changes as well. Since T/W is 
unavailable as a trade variable, the aspect ratio is typically used instead. 
 
The optimum aircraft weighs about 7100 lbs {3220 kg} when sized to the design mission 
while meeting all performance constraints. These include a 28 degree per second 
instantaneous turn and a 3-g sustained turn, plus takeoff and landing distances of 1600 ft 
{488 m}. The optimum wing loading is about 11.5 psf {56 kgsm} and the optimum 
aspect ratio is about 1.8. 



 98 

 

 
figure 44. Tactical UAV - Carpet Plot Optimization 
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7 RESULTS 
Development of the MDO modules incorporating features and options as described above 
was completed according to plan. The four notional aircraft concepts were designed, 
analyzed, and optimized using these routines. Numerous variations in MDO methods and 
options were run along with a number of trade studies of the use of various geometric 
constraints and automated aircraft redesign procedures. A test-case run matrix is 
presented in the Appendices which also provides a summary of the results of the MDO 
analysis conducted for this research, including the final value of the selected Measure of 
Merit (price for the fighter, takeoff gross weight for the others). Also included, for the 
chromosome-based MDO routines, are the final value of Bit-String Affinity (see 4.3.7) 
and the percent of the final population meeting all performance requirements.  
 
Sample results for certain cases are also provided in the Appendices, but since each run 
produces several thousand pages of output detailing about 10,000 parametric design 
variations, complete data are not included herein. Results data are graphically 
summarized in the sections below. 
 

7.1 Calibration Results: Orthogonal Steepest Descent Search 

As detailed in Section 4.2, the Orthogonal Steepest Descent (OSD) method is both 
deterministic and determined, and will ultimately find the best-possible optimum given 
the selected ranges of parametric variables. While OSD is theoretically capable of 
converging on a local optimum, thus missing a better global solution, this was never 
actually observed during this research. This author believes that such problems are 
unlikely in aircraft design optimizations for two reasons. First, the design space is 
unlikely to be reflexed for any of the parametric variables in use. It is for this reason that 
second-degree polynomial response surfaces are widely accepted as representative of the 
design space. Second, and perhaps more important, in aircraft design problems we are 
optimizing a design layout prepared by a human designer, and can rely on the designer’s 
experience to develop a good-enough concept that the optimal solution is found within 
fairly small excursions of the parametric variables. 
 
Orthogonal Steepest Descent optimization was conducted for all four aircraft concepts, 
and in each case it found a better design than was found by the carpet plot method. These 
are summarized below, showing the solution convergence in graphical form followed by 
the optimum design variables and Measure of Merit.  
 
These results can be considered a calibration baseline for the other MDO methods 
described later. It should be expected that these stochastic methods would never find a 
better result, but may find almost as good of a result in a fewer number of parametric case 
evaluations. Run numbers refer to the test-case run matrix in the Appendices. 

7.1.1 Advanced Multirole Export Fighter 

Results for the Advanced Multirole Export Fighter are shown in figure 47 (run 1). Recall 
that the carpet plot optimization of this design yielded a T/W of 0.72 and W/S of 70. This 
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gives a purchase price (MOM) of $38.5 million, at a takeoff gross weight of 44,500 lbs 
{20,185 kg}. OSD, changing eight rather than two design variables, was able to find a 
revised design with a price of $34.1 million and weight of 36,600 lbs {16,600 kg}. It took 
about 17,000 parametric case evaluations to get this final number, but the method 
required a few thousand more cases to be sure that the best answer was actually found. 
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      Carpet Plot   OSD    

T/W       0.720    0.617     

W/S      70.000   68.65    psf 

ASPECT    2.500    2.97     

SWEEP    48.000   38.4     

TAPER     0.120    0.096     

t/c       0.045    0.054 

Fus l/d  13.846   16.62      

CL-dsgn   0.200    0.235 

MOM      $38.5m   $34.1m 

Wo        44.5k    36.6k   lbs 

Wo        20.2k    16.6k   kg  

 
figure 45. OSD Optimization Results – Advanced Multirole Export Fighter 

 
The best aircraft from the OSD optimization is shown in figure 46 as a two-variable 
carpet plot around the optimum. This is a useful way to visualize the impact of the 
performance requirements on the optimal solution. One can see that the OSD method 
worked because the design constraints cross exactly at the baseline aircraft (middle) of 
the graph. 
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figure 46. Carpet Plot About Optimal Design: Fighter 

7.1.2 Civil Transport 

Optimization of the Civil Transport is shown in figure 47 (run 2). In this case, the starting 
design was the “bad” transport shown in figure 31, deliberately designed poorly to see if 
the optimizers could “fix” it. The carpet plot optimization of this “bad” design yielded a 
design takeoff gross weight of 220,462 lbs {100,000 kg}, and was unable to meet all 
performance requirements (figure 36).  Starting with the original, “good” design, the 
carpet plot found a minimum takeoff gross weight of 193,000 lbs {87,643 kg}. This 
design did meet all performance requirements.  
 
To test the OSD method, it was given the “bad” design as a starting point and had no 
trouble converting it back into a “good” design with a takeoff gross weight of 188,100 lbs 
(85,321 kg}. All performance requirements were met. 16,254 parametric case evaluations 
were required.  
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     Carpet Plot*   OSD*     OSD(good) 

T/W       0.365     0.30      0.31 

W/S      96.000   113.06    116.69 psf   

ASPECT    5.000    12.00     11.52 

SWEEP    40.000    25.00     23.42 

TAPER     0.250     0.20      0.20 

t/c       0.120     0.14      0.14 

Fus l/d  11.266    12.96     12.26 

CL-dsgn   0.550     0.66      0.45    

Wo      220.5k    188.1k    187.9k lbs 

Wo      100.0k     85.3k     85.2k kg  

             (*bad) 

 
figure 47. OSD Optimization Results – Civil Transport (starting with “bad” one) 

 
A second OSD run was made (run 9), starting with the original “good” civil transport 
design to see how that would compare with the “bad” starting point. This found a 
minimum takeoff gross weight of 187,900 lbs {85,230 kg}, with very similar values of 
the design parameters. The slight weight difference is due to the fact that the “good” 
design was made “bad” simply by changing the wing, without adjusting the tail areas. 
The optimizer did adjust tail sizes per the automatic redesign procedures described in 
Section 5.1. In other words, the computer did a better job than the human designer – this 
author! 
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7.1.3 Asymmetric Light Twin 

The carpet plot optimization of the Asymmetric Light Twin found a minimum takeoff 
gross weight of 2180 lbs {989 kg}. Since the design is based around existing engines, the 
two-variable carpet plot was done using wing loading and aspect ratio as parameters. 
Results using OSD are shown in figure 48 (run 3). Seven variables are used (T/W is still 
unavailable as a parametric parameter since an existing engine is used). The optimized 
design weights 2098 lbs {951 kg} and meets all requirements. 7398 parametric case 
evaluations were run to obtain this result. 
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      Carpet Plot     OSD  

W/S      25.000      26.60 psf 

ASPECT    9.880       8.75 

SWEEP     8.030       6.42 

TAPER     0.400       0.32 

t/c       0.150       0.18 

Fus l/d   5.000       4.81  

CL-dsgn   0.500       0.60 

Wo        2180        2099 lbs 

Wo         989         952 kg  

 
figure 48. OSD Optimization Results – Asymmetric Light Twin 
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7.1.4 Tactical UAV 

The final calibration run for the Orthogonal Steepest Descent (OSD) method for MDO is 
for the tactical UAV (run 4). Again, the engine is fixed in size so the T/W cannot be used 
as a parametric variable. Also, there is no fuselage so its fineness ratio cannot be 
optimized. 
 
Carpet plot optimization of this design yielded a W/S of about 11.5 psf {56 kgsm}, and an 
aspect ratio of 1.8, with a takeoff gross weight of 7100 lbs {3220 kg}. OSD, changing six 
rather than two design variables, was able to find a design with a weight of 6493 lbs 
{2945 kg}, requiring a total of 2514 design cases.  
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      Carpet Plot   OSD  

W/S      11.50     14.50      psf 

ASPECT    1.80      1.98     

SWEEP    60.000     48.0     

TAPER     0.110    0.088     

t/c       0.150    0.129 

CL-dsgn   0.500    0.600 

Wo        7100     6493       lbs 

Wo        3220      2945      kg 

 
figure 49. OSD Optimization Results – Tactical UAV 

 
A two-variable carpet plot of the best result from the OSD optimization is shown as 
figure 50. This shows an interesting result. The performance constraints of the carpet plot 
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allow moving downwards from the OSD-optimized design (seen at the center of the 
carpet lines), into the crosshatched region. If allowable, this would reduce the weight 
from about 6500 lbs to about 6380 lbs {2948 to 2894 kg}, or about two percent.  
 

 
figure 50. Carpet Plot About Optimal Design: UAV 

 
The reason that the OSD optimization didn’t “discover” this possibility is that it wasn’t 
permitted to. In the setup for this case, the highest permitted wing loading was restricted 
to 14.5 psf {70.8 kgsm} to ensure that the wing would remain large enough to contain the 
weapons bay. The carpet plot knows nothing of such constraints, and offers the 
crosshatched region in its ignorance. This does indicate to the designer that a price is 
being paid for attempting to keep the weapons bay entirely within the contours of the 
wing, and suggests that for this design a “stub” fuselage may be a more optimal design.  

7.1.5 Comparison: 2-Variable OSD vs. Carpet Plot 

The Orthogonal Steepest Descent optimization routine in RDS-Professional was used to 
cross check its results versus those obtained via classical carpet plot optimization, as 
described above. Results are reassuring. Restricting OSD to the same two variables used 
for the carpet plots of the four designs above gave the same results as found on the carpet 
plots (runs 5-8).  
 
The only exception was the “bad” civil transport, where the OSD optimization could not 
find an answer. As shown on the carpet plot, no change in T/W and W/S could fix the 
engine-out climb requirement. The OSD was then rerun with that performance 
requirement removed (run 47), and was able to find the same result as the carpet plot. 
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These 2-variable OSD runs took about 60 parametric evaluations, versus the 25 (52) used 
for a standard carpet plot. In either case, total time is a few seconds. 
 

7.2 Stochastic MDO Results  

A total of 25 MDO runs were initially conducted, encompassing all of the chromosome-
based stochastic methods developed for this research including Monte Carlo, three 
Genetic Algorithms (Tournament, Roulette, and Breeder Pool), and the Evolutionary 
scheme here called “Killer Queen” (runs 11-36). Altogether, this totaled about 250,000 
parametric aircraft designs, each one defined by a chromosome gene bit-string and 
subjected to aerodynamics and weights analysis followed by sizing, performance, and 
cost calculations. All of the runs for the fighter aircraft were then completely redone to 
see if the results were similar. They were, providing some confidence that these results 
are repeatable in spite of the stochastic nature of these optimization methods. 
 
Results are graphed in the following figures, showing the convergence of the Measure of 
Merit. In each case, the OSD results shown in section 7.1 are included for comparison. 
The OSD final value of the measure of merit was superior to all of the other methods for 
all four aircraft, but by a fairly small amount. And, the OSD optimization generally took 
two to three times as many case evaluations to get to the optimum. However, even the 
long OSD optimizations took only about 10-30 minutes each on a 1 gHz personal 
computer, while the other methods averaged about 10 minutes each. 
 
The Monte Carlo method is not included in these graphs. It doesn’t improve or evolve the 
design, it simply calculates the requested number of design cases and reports on the best 
one found. As can be seen in the Appendices, the Monte Carlo result was usually worse 
than that of the other approaches, but not by a significant amount. More than any other 
approach, its success depends upon pure luck and so general conclusions relative to other 
methods are difficult. However, it is simple to program and at least for these cases, gave 
credible results.  
 
Optimization results for the Advanced Multirole Export Fighter are shown in figure 51. 
Note that an OSD best solution first appears after 6561 cases are evaluated. That is one 
full-factorial evaluation around the baseline design for eight variables, yielding 38 cases. 
The other methods have a first result that is simply the best member of a random initial 
population (default 500 in these calculations). Any differences in this starting value are 
pure luck and reveal nothing about the method employed!  
 
By the time of the first full-factorial baseline parametric results with the OSD method, all 
of the stochastic methods (including Monte Carlo) have attained a result nearly as good 
as the OSD final solution. In the end, though, the OSD method finds a slightly better 
solution, and it gets the same result every time it is run. 
  
Others such as Wang and Damodaran87 have reported the opposite – that deterministic 
solutions are faster than stochastic. However, this research finds that it depends on the 
number of design variables and that for a large number of design variables, the stochastic 
methods can be faster (see below). 
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figure 51. MDO Solution Convergence: Fighter 

 
Relative convergence rates of the stochastic methods favor the “Killer Queen”, which 
creates a new generation simply by copying the best member of a generation and 
applying a high mutation rate. Close behind is the Breeder Pool, where a weighted 
Measure of Merit ranking is used to isolate a superior subpopulation from which 
individuals are selected at random for reproduction. Roulette selection appears to be the 
worst. 
 
Bit-String Affinity was defined in Section 4.3.7 as an indication of the sameness of the 
members of a population or generation. Bit-String Affinity equals zero for a totally 
random population, and equals 100% for a completely identical population. This provides 
a useful and visual convergence criteria, and was included as an alternative stopping 
criterion in these routines. In at least six of the runs listed in the Appendices, Bit-String 
Affinity stopped the run early when all members of the population became virtually 
identical. 
 
The following figure depicts the progression of Bit-String Affinity for the fighter aircraft 
using these MDO methods. Observe that the Killer Queen method begins, like the other 
methods, at virtually random (near zero) but immediately jumps to a high value where it 
remains for all subsequent generations. This is to be expected because after the first 
generation, all populations are created from mutated copies of the single best individual 
of the previous generation. The Bit-String Affinity in this case is just a reflection of the 
mutation rate being used. 
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figure 52. Bit-String Affinity: Fighter 

 
This Bit-String Affinity measure indicates that the Breeder Pool is producing the 
strongest convergence. As can be seen, the Roulette method seems to have a difficult 
time converging. 
 
Results of the MDO runs for the civilian airliner are shown next. The OSD method begins 
with an initial value so high that it is almost off the scale. This is due to the “badness” of 
the initial baseline design, which was deliberately modified to reflect poor choice of 
design variables. So, the initial baseline and all variations around that baseline are poorly 
designed and hence, are heavy. Then, the OSD method must step away from this “bad” 
part of the design space, and that takes a large number of steps.  
 
The stochastic methods can initially examine design concepts throughout the design 
space. With a bit of luck, a fairly good design can be found even in the first population. 
No time is wasted stepping away from the bad region of the design space. 
 
The same trends as to which stochastic method converge the fastest hold for this concept 
as well. Apparently the Tournament method got lucky in the first population, but was 
only able to slightly improve upon it afterwards. Bit-String Affinity for the transport is 
shown in figure 54. 
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figure 53. MDO Solution Convergence: Transport 

 
 

 
figure 54. Bit-String Affinity: Transport 
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The Asymmetric Light Twin is optimized using only seven variables since the T/W ratio 
cannot be used (fixed-size engine). The OSD method is very sensitive to the total number 
of variables. With fewer design variables, it managed to beat the stochastic methods to a 
solution, and found a better solution as well. Of the stochastic methods, the Breeder Pool 
performed the best (figure 55). 
 

 
 

figure 55. MDO Solution Convergence: Light Twin 
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figure 56. Bit-String Affinity: Light Twin 

 
Similarly, the UAV design uses only six variables (no T/W or fuselage fineness ratio), 
and the OSD method performs even better relative to the stochastic methods. This is 
depicted in figure 57. 
 
This author expects an extrapolation in the other direction to follow this same trend. 
Increasing the number of variables beyond the eight used in this research would probably 
bring the OSD method almost to a halt with today’s computers, while the stochastic 
methods would be less affected. 
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figure 57. MDO Solution Convergence: UAV 

 

 
figure 58. Bit-String Affinity: UAV 

 
To better understand the relative performance of these methods it is useful to know the 
number of parametric case evaluations required to attain a certain “goodness” of result. 
The deterministic OSD result can be used as a benchmark. In figure 59, the number of 
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parametric evaluations required to find a result only 1% higher than the OSD solution is 
graphed. This is shown in figure 60 for a result that is 2% over the OSD solution. These 
charts seem to indicate that as few as four generations of 500 each will usually get to 
within 1-2% of the final result for the Breeder Pool and Killer Queen methods. This is, in 
some cases, a tenth of the number of case evaluations required to find (and know you 
have found) the best aircraft using OSD. 
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figure 59. Number of Runs Required to Come Within 1% of Best   
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figure 60. Number of Runs Required to Come Within 2% of Best 

 
  

7.3 Hybrid Methods  

From these results it would seem that the stochastic methods are superior at quickly 
exploring the total design space, but that when you want to get the final “right” answer 
the Orthogonal Steepest Descent method is preferable. This led to the idea of a hybrid 
method. Code was developed to allow starting with any of the stochastic methods for a 
specified number of generations, then finishing with an Orthogonal Steepest Descent 
search beginning from the best found by the stochastic method. 
 
In the test cases conducted for this research, the hybrid methods didn’t function very 
well. The problem seems to be an inability to predict in advance how good the stochastic 
result would be and thereby determine the desired starting resolution for the deterministic 
search. If the starting resolution is set too coarse, the deterministic routine repeats 
thousands of full-factorial case evaluations around the stochastic method’s solution while 
slowly tightening the resolution. If the resolution is set too fine, and the stochastic 
method’s result wasn’t very close to the final optimum, the deterministic routine requires 
a huge number of small steps to eventually find the correct optimum.  
 
Runs 72-76 applied the hybrid method. In each case, the optimization took as long or 
longer than an OSD search starting from the as-drawn baseline design. In one case, the 
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Tournament-OSD hybrid, it took over 43,000 parametric case evaluations to find a 
solution. 
 

7.4 Trade Studies of MDO Methods and Options 

These MDO routines have many options, as described in Section 4.1. In this section, 
several of these are exercised to determine their impact on the solution convergence and 
final result§§§. Interestingly enough, the main lesson of these studies is that the details of 
these OSD methods do not change the results by much – just about any combination of 
such options would probably yield a workable method. Perhaps this explains why some 
people say that there are as many MDO methodologies as there are MDO researchers. 

7.4.1 Measure of Merit Weighting 

In Section 4.3.2, a scheme was described to allow increasing the importance of the 
calculated value of the measure of merit versus the randomness of the selection process. 
A linear weight implies that being “good” is equally weighted with being “lucky”. 
Squared, fourth-power, and cosine wave weighting functions were applied to the fighter 
and transport designs. These were tested using the Roulette Genetic Algorithm which, 
based on results above, seems that it would benefit the most from an additional weighting 
applied to Measure of Merit.  
 
Results were inconclusive. None of the weighting schemes had a substantial effect on the 
final calculated value of the measure of merit (cost for the fighter, weight for the 
transport). Convergence graphs were prepared to see if an improvement could be 
detected, but little change was observed other than a random-appearing scatter in the 
convergence lines.  
 
In any event, these MDO methods all work reasonably well without such weighting. 
Perhaps that is why little effect was seen – they already work too well for an 
improvement to be noted. 

7.4.2 Alternative Crossover Schemes 

In the cases run above, uniform crossover was used exclusively (see 4.3.5) based on what 
seems to be a consensus in the recent literature. Alternative crossover schemes were 
tested, namely the bisection scheme and a parameter-wise scheme wherein genes are 
passed whole to the next generation, as previously described. For the fighter aircraft 
results are shown below which indicate that bisection crossover is slightly poorer and 
uniform crossover is best, with parameter-wise crossover very similar to uniform 
crossover. A similar evaluation for the transport aircraft revealed virtually no difference 
in outcome for all three schemes.  
 

                                                 
§§§ The MDO methods and options implemented in this research, when applied to each other in a full 
factorial sense, define a huge number of alternative MDO approaches. To truly find the most-optimal 
combination of methods, one should apply MDO to the MDO! This is beyond the scope of this study, and 
as indicated in these results, would probably not offer any real improvement to the optimization. 
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figure 61. Alternative Crossover Schemes: Fighter 

7.4.3 Simulated Annealing   

A form of simulated annealing was tested on the fighter and transport designs. As 
implemented here, this applies a linear scaling to the performance penalty factor from a 
low initial value to a higher value at the end of the optimization. Here the measure of 
merit is not being “annealed”, only the penalties applied when performance constraints 
are missed. Results for the transport are shown below (run 49), and indicate some benefit 
to this approach. A better value of the measure of merit is found, despite starting from a 
worse value in the initial random population. However, a similar study for the fighter 
aircraft did not show a benefit (run 48).  
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figure 62. Simulated Annealing: Transport 

7.4.4 Elitism   

Elitism was defined above as the preservation of the best individual or individuals of each 
generation. This upper elite is preserved without crossover or mutation and inserted into 
the next generation. By using Elitism, one is assured that the next generation will be at 
least as good as the current generation – backsliding is prevented. However, the elite 
individuals do not contribute to the evolutionary process because they are neither mating 
nor mutating, so convergence may be slowed. 
 
Elitism of one individual was employed as the default in all these MDO runs. This was 
removed for three test runs. In none of these was the final result materially affected. In 
figure 63 one can see that elitism does serve to prevent the upward spike seen at 
generation 5 (after 2500 evaluations). But, the no-elitism solution managed to converge 
to essentially the same result even with this occurrence of backsliding. 
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figure 63. Elitism Trade Study – On and Off (Fighter) 

 

 
figure 64. Elitism Trade Study – 50 vs. 1 (Transport) 

 
The other extreme of elitism is shown in figure 64. Here, an elite group of the 50 best 
individuals is selected for each generation and preserved into the next. This provides 
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superb convergence in this example, with the final result virtually identical to the OSD 
best solution. This makes intuitive sense, because it provides each new generation with a 
cadre of hardened victors undiluted by mutation.   

7.4.5 Miscellaneous Trade Studies   

Runs 61-63 vary the size of the Breeder Pool from 5% to 75 % (the default value, 
determined by trial runs during code development, is 25%). Results indicate a better 
convergence and a better final result as pool size is reduced, making the optimization 
more elite. At the extreme, a pool size of one individual would be identical to the Killer 
Queen method except that, of course, the crossover operation would be problematic. 25% 
was left as the default on purely intuitive grounds. 
 
The impact of population size was studied in runs 67-68. Other researchers often use 
population sizes much smaller than the 500 used by default in this research. This is 
probably a matter of necessity – their analysis methods do not permit conducting 10,000 
parametric case evaluations on a routine basis. The population size rule-of-thumb offered 
in Section 4.5 would suggest that a population of 200 would be adequate for the 
chromosome bit-string used herein (4 times 48 bits in the string). Results indicate a faster 
convergence but slightly poorer results with a smaller population size. With a population 
of only 50 individuals, premature convergence is noted. 
 
A mutation probability of 0.1% per bit (5% for each individual) was used as the default in 
these case runs, based on suggestions in Section 2.5.10 and on good results observed in 
early test runs. A trade study of mutation rate was done using the Tournament scheme, 
increasing mutation from 5% to 62% per individual (runs 64-66). The effect was 
minimal, but indicate worse results with high mutation which prevented convergence. 
 
For the Evolutionary “Killer Queen” MDO method, mutation is essential as it is the only 
means of obtaining new genetic information in the next generation. It was varied from the 
default 95% down to 8 percent (runs 69-71). Surprisingly, this had little effect on the final 
best answer, but slowed the convergence somewhat. 
 
To assess the impact of number of variables, a number of cases were run with the 
variables restricted from eight down to two (runs 77-87). Results are as expected – fewer 
variables results in a faster solution but, of course, with some design variables fixed the 
resulting aircraft cannot be quite as optimal. 
 

7.5 Automated Aircraft Redesign Procedures  

As discussed in Section 5, procedures were coded to revise the aircraft geometric inputs 
to analysis to properly reflect the changes to the aircraft design resulting from parametric 
changes to the selected design parameters. These were “on” during all of the MDO cases 
described herein, and inspection of the modified analysis input files indicates their 
reasonableness.  
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Runs 102-105 were done with these portions of the code deactivated to determine if these 
changes materially affect the resulting design. Results were not greatly significant, with 
W0 differing by less than one percent for the cases studied. However, these design 
examples are good design examples which makes them bad test cases for automated 
redesign procedures. The as-drawn layout differs in takeoff gross weight by only 5-10% 
from the final optimized design and the optimized design parameters are also not greatly 
different from the baseline, so the effect is relatively small.  
 

7.6 Net Design Volume 

Net Design Volume (NDV) was defined in Section 5.5 as a method to prevent the 
optimizer from unrealistically reducing the wing size of a “tight” design without 
providing volume elsewhere for the fuel displaced. It was “off” for most of these MDO 
case runs, but was turned on for a specific evaluation of its effects (runs 88-92). 
Inspection of the results indicate that it is in fact making the fuselage a bit larger when the 
wing is parametrically made smaller in volume (area, thickness, or aspect ratio due to the 
fuselage cutoff effect). When permitted by user input, it also makes the fuselage smaller 
when the wing gets larger. 
 
This last effect caused confusion because the use of NDV hold kept reducing the aircraft’s 
takeoff gross weight by several percent, instead of increasing it as normally expected 
when another constraint is added to an optimization. The wing optimized larger so the 
NDV hold routine made the fuselage smaller, saving weight and drag.  
 
A case run with “no-smaller” selected returned the unconstrained optimum indicating that 
the method was working properly. An attempt was made to force the optimizer to make 
the fuselage larger by relaxing the performance constraints that drove the wing loading 
(runs 90 and 91). The optimizer responded by making the wing area smaller as expected, 
but also made the wing thicker resulting in a smaller fuselage once again! When 
permitted, the optimizer likes to make the fuselage smaller and will grow the wing 
somehow to allow this. 
 
For the small number of additional inputs and a minimal computational expense, NDV 
seems to provide a welcome note of realism in such optimizations – even if it outsmarts 
the user’s attempt to demonstrate its effects. 
 

7.7 Geometric Constraints   

Options for constraining fuselage and wing geometry for real-world requirements were 
coded and tested in runs 95-100. For the fuselage, length can be constrained to a 
maximum input value while diameter can be constrained to an input minimum. For the 
wing, a span limit can be input. Also, the aspect ratio can be constrained to avoid pitchup 
as described in Section 5.4.3. 
 
As should be expected, these constraints have no affect at all if the optimization moves 
away from them. A wingspan constraint will not affect the takeoff gross weight if the 
optimization is reducing the span anyway. 
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Run 93 shows a span limit on the transport design resulting in an 8% increase in takeoff 
gross weight. The optimizer was prevented from increasing the wing aspect ratio as much 
as it desired. In run 95 the fighter length was constrained to avoid exceeding the as-drawn 
baseline length (very common in fighter design such as for the F-22). This increased the 
aircraft price by 9% compared to the unconstrained optimum, which was lengthening the 
fuselage as a part of the optimization. 
 
Application of the pitchup constraint to the commercial airliner was initially trivial 
because the optimum wing geometry was within the pitchup avoidance limits. To force a 
test case, the design maximum speed was increased to Mach.9, which leads to higher 
sweep. The pitchup-constrained M.9 optimum design is almost 50% heavier than the 
unconstrained design optimized for M.9, because the aspect ratio is held to a low value to 
avoid pitchup. Luckily, real airliners usually have large horizontal tails to avoid pitchup 
so the wing does not need to suffer this constraint. The other aircraft were already well 
within the pitchup limits so use of this constraint was trivial, and not recorded. 
 

7.8  Comments on Ease of Programming 

This author, who struggled for many months to perfect the classical carpet plot and 
Orthogonal Steepest Descent routines in the RDS-Professional program, found it 
remarkably easy to incorporate the chromosome-based optimization schemes into the 
existing aircraft analysis code. Also, it was much easier to add more variables into 
chromosome-based schemes than into OSD (not that it is trivial to get these methods to 
work properly – just easier!). 
 
Easiest of all was the Monte Carlo routine, with literally a few dozen lines of code to 
create random chromosome/gene bit-strings and call the analysis routines. The only real 
logic required is simply to remember which of the designs is “best”. Note that the other 
methods actually start with an initial population defined by the Monte Carlo routine. 
 
The Evolutionary method used here (“Killer Queen”) was also quite easy to program. 
Basically, all that was added to the Monte Carlo routine was an iterative loop of 
generations in which the best design found was copied and mutated. 
 
The other schemes were all about equally easy (or difficult) to program. While the basic 
logic seems straightforward, allowing for numerous options and variations made the 
coding and debugging more difficult. Still, all of these chromosome-based methods 
together were easier to code and debug than the OSD method alone! 
 
One interesting observation is that it is easy in these methods to allow the user to specify 
a range of a design variable that excludes the as-drawn baseline’s value of that parameter 
(such as, the design is drawn with an aspect ratio of 8 but the user tells the code to 
investigate designs between 10 and 12). In the OSD coding this is forbidden because it 
must start from the as-drawn baseline design, and step away from it. But, perhaps the 
designer should draw it right the first time! 
 



 122 

 
 
 

(This page intentionally blank) 
 



 123 

8 SUMMARY AND CONCLUSIONS 
 
Research has been conducted into the improvement of the Aircraft Conceptual Design 
process by the application of Multidisciplinary Optimization (MDO). Aircraft conceptual 
design analysis codes were incorporated into a variety of optimization methods including 
Orthogonal Steepest Descent, Monte Carlo, a mutation-based Evolutionary Algorithm, 
and three variants of the Genetic Algorithm with numerous options.  
 
Four notional aircraft concepts were designed as test cases for evaluation of MDO 
methods and options, namely an advanced fighter, a commercial airliner, an asymmetrical 
light twin, and a tactical UAV. The commercial airliner design was deliberately modified 
for certain case runs using poorly-chosen design parameters including wing loading, 
sweep, and aspect ratio, to see if the MDO methods could “fix it.” 
 
MDO methods and options were evaluated using these notional designs in over a hundred 
case runs totally more than a million parametric variations of these designs. These 
variations included application of automatic redesign procedures to improve the realism 
of such computer-designed aircraft. Each design variation was completely analyzed as to 
aerodynamics, weights, performance, cost, and mission sizing, and evaluated as to 
performance and geometric constraints. 
 
The key conclusion – aircraft conceptual design can be improved by the proper 
application of such Multidisciplinary Optimization methods. MDO techniques can reduce 
the weight and cost of an aircraft design concept in the conceptual design phase by fairly 
minor changes to the key design variables. These methods proved to be superior to the 
traditional carpet plots used in the aircraft conceptual design process for many decades. 
 
Evaluation of the different MDO methods for aircraft design optimization indicated that 
all of the methods produce reasonable results. For a smaller number of variables the 
deterministic Orthogonal Steepest Descent searching method provides a slightly better 
final result with about the same number of case evaluations. For more variables, 
evolutionary/genetic methods seem superior. The Breeder Pool approach defined herein 
seems to provide the best convergence in the fewest number of case evaluations. 
 
The Net Design Volume approach defined herein to assure sufficient volume for fuel and 
internal equipment appears to work well and improves the design realism with little user 
effort. Other geometric constraints such as diameter, length, and span limits were also 
found to be useful for some design problems. 
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9 APPENDICES 

9.1 APPENDICE A – VARIABLES, CONSTRAINTS, & MOM’s 

 
Following are suggested design variables, constraints, and measures of merit as discussed 
in Section 2.7 above. In each category, the items are given roughly in order of this 
author's expectation as to importance and suitability for aircraft conceptual/preliminary 
MDO. Notice that some parameters of great importance, such as number of wing spars, 
are missing from these lists. Usually, such an inside-only change to wing structure would 
have minimal impact on the overall design other than in structural weight and cost, and 
hence can be optimized separately. In mathematical terms, it is expected that such 
parameters are weakly coupled with respect to the other design variables, and furthermore 
will have a much smaller impact on the objective function than those others. Such non-
inclusion of non-global design variables is essential to hold down the computational time 
required for MDO. 
 
Other parameters that might be noted as missing are, in this author's opinion, dependent 
variables. For example, the number of lavatories in a commercial airliner is driven by 
specifications based on number of passengers, so it should not be used as an independent 
design variable. 

9.1.1 Recommended Design Variables 

      ("independent variables" in the MDO) 

 

THE BASIC SIX OR FIVE 

• T/W or P/W (unless fixed-size engine) 

• W/S (area) 

• Aspect Ratio 

• Taper Ratio 

• Sweep 

• Airfoil t/c (constant or averaged) 

 

WING ENHANCEMENTS 

• Design Lift Coefficient or airfoil optimization 

• Planform LE/TE breaks (% C at % b/2) 

• Winglets (presence and geometry) 

• Airfoil t/c distribution 

• Twist or twist distribution 

• Flap types 

• Aileron / flap % span 

• Aileron / flap % chord (vs. rear spar location) 
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FUSELAGE VARIABLES 

• Length / diameter ratio (“fineness ratio”) or diameter alone 

• Nose or radome fineness ratio 

• Upsweep angle or aft-end fineness ratio 

• Volume distribution (optimize wave drag) 

 

PASSENGER CABIN / CARGO BAY 

• # Seats across 

• # Aisles  

• # Seats   (if allowed by design objectives)  

• Dimensions of cargo containers / pallets / hold 

 

ENGINE OPTIONS 

• # Engines 

• Engine location(s) 

 

JET ENGINE VARIABLES 

• Bypass Ratio (BPR) 

• Overall Pressure Ratio (OPR) 

• Turbine Inlet Temperature (TIT) 

• Capture Area 

• Inlet lip radius 

• Auxiliary door presence / size 

• Inlet type (pitot, ramp, cone,other) 

• Ramp or Cone  angles (supersonic) 

• Exhaust type 

 

PROPELLER VARIABLES 

• Propeller disk power loading 

• Propeller blade power loading 

• Blade Design Lift Coefficient 

• Design Advance Ratio (fixed pitch) 

• Blade Pitch Distribution 

• Turbo/supercharging  

• Cooling Options 

 

LANDING GEAR 

• # Mains 

• Retracted Location (wing, fuselage, pods, other) 
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TAIL GEOMETRY (HORIZ. & VERTICAL) 

• Tail Volume Coefficient (Area
****

) 

• Aspect Ratio 

• Taper Ratio 

• Sweep 

• Airfoil t/c 

• Location 

• Tail Type 

9.1.2 Recommended Design Constraints 

     ("constraint lines or surfaces" in the MDO) 

 

PERFORMANCE REQUIREMENTS 

• Takeoff / landing distances 

• Stall & approach speed 

• Maximum speed 

• Climb rate or time to climb 

• Sustained & instantaneous turn rate 

• Ps at given conditions 

• Acceleration time/distance 

• Glide ratio / sink speed 

• Descent rate / time / distance 

• Engine-out climb, takeoff, level flight 

• Alternate mission range / endurance 

                                                 
**** Use of the tail areas as design variables is not the preferred practice, since required tail sizes are 
normally calculated from requirements for controllability, trim, and stability. Thus tail areas should be 
determined as constraints, not design variables. Or, better yet, the tail areas should be included as a part of 
the automated redesign so that every design variation meets requirements for controllability, trim, and 
stability. 
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GEOMETRIC LIMITATIONS 

• Cabin / payload minimum dimensions 

• Wingspan 

• Length 

• Static Tail height above ground 

• Spotting factor 

• Gear span 

• Tail-down angle (takeoff & landing) 

• Stealth-driven angles, edges, etc. 

 

VOLUMETRIC   

• Fuel  

• Avionics 

• Subsystems & equipment 

• Crew station 

• Cabin or payload bay 

• Net Design Volume Density (see Section 5.5) 

 

OPERATIONAL CONSTRAINTS 

• Weight-class limitation (ex: 12,500 for FAR23) 

• Engine-out overwater flight time limits 

• Carrier operability (weight, size, performance) 

• Noise / sonic boom 

• Environmental pollutant creation 

• Signature 

• Vulnerable area 

 

STABILITY & CONTROL CONSTRAINTS
††††

 

• Static longitudinal stability plus trim 

• Static directional stability plus engine-out rudder trim 

• Roll rate or time to roll 

• 6 DOF dynamic modes (spiral, phugoid,etc.) 

• Above including flexible response 

• Spin entry & recovery 

                                                 
†††† A better practice would be to include tail areas a part of the automated redesign so that every design 
variation meets requirements for controllability, trim, and stability.  
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9.1.3 Recommended Measures of Merit 

     ("dependent variables" in the MDO) 

 

WEIGHT-BASED 

• Sized takeoff gross weight 

• Sized empty weight 

• Fuel weight 

• Structure weight 

• AMPR / DCPR* weight  

• Alternate mission useful load 

(*Airframe Manufacturer's or Defense Contractor's Planning Report - see Raymer11)  
 

COST-BASED 

• Development cost 

• Procurement cost 

• Purchase price 

• Fuel cost 

• Operating cost (yearly or per seat-mile) 

• Life-cycle cost 

 

REVENUE-BASED 

• Gross or net revenue 

• Break-even load factor 

• Net Present Value 

• Return on Investment 

 

UTILITY-BASED   

• Range / endurance (if fixed-size design) 

• Ton-miles cargo delivered* 

• Combat Exchange ratio 

• Percent of Targets "serviced" or "serviceable" * 

• Enemy assets destroyed* 

• Movement of Line of Troops* 

• Days to win the "war" * 

• Alternate mission range / endurance / payload 

(*at constant cost) 
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9.2 APPENDICE B – AIRCRAFT ANALYSIS METHODS
‡‡‡‡

 

9.2.1 Overview of RDS Aircraft Design Software 

Aircraft analysis for this research was done using the calculation modules of RDS-
Professional, developed by this author over a ten-year period. RDS is a sophisticated PC-
based aircraft design and analysis system developed for the conceptual design of new 
aircraft and the initial analysis of derivatives and alternate missions.   
 
RDS comes in several versions. RDS-Student is available to assist students in the tedious 
analysis calculations of a typical “capstone” senior design class, leaving them more time 
to develop a design concept and perform the trade studies and optimizations that are a key 
and often-skipped portion of the design process. RDS-Homebuilt is aimed at the aircraft 
homebuilder community, providing them with a tool using industry methods at an 
affordable price. RDS-EZ is primarily for enthusiastic amateurs, offering simplified 
inputs consisting of only 20 inputs to define an aircraft for RDS analysis. RDS-
Professional is the complete RDS program as developed for use by aircraft designers in 
industry, government, and academia for conceptual trade studies, technology evaluations, 
and preliminary performance predictions.   
 
RDS features a 3-D CAD module for design layout, and has analysis modules for 
aerodynamics, weights, propulsion, and cost.  Also included are aircraft sizing, mission 
analysis, and complete performance analysis including takeoff, landing, rate of climb, Ps, 
fs, turn rate, and acceleration.  RDS provides graphical output for drag polars, L/D ratio, 
thrust curves, flight envelope, range parameter, and more. 
 
RDS follows the design and analysis methods of this author’s textbook AIRCRAFT 

DESIGN: A Conceptual Approach
11.  These methods are distilled from the classical and 

time-proven first-order techniques commonly used in industry design groups for early 
visibility into design drivers and options.  With RDS these methods are automated and 
incorporated into user-friendly modules that permit a tremendous quantity of calculation 
including trade studies and optimization in the early stages of design.    
 
RDS is marketed through Conceptual Research Corporation (PO Box 923156, Sylmar, 
CA, 91392, USA), excepting RDS-Student which is marketed through AIAA (800 682 
2422). 
 
Following are brief discussions of the analysis methods employed by RDS as used in this 
research. 
 

                                                 
‡‡‡‡ Portions of this section excerpted and edited from Raymer, AIRCRAFT DESIGN: A 

Conceptual Approach, 199911, and Raymer, RDS-Professional Users Manual, 200069.  
For permission to copy contact the author. 
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9.2.2  Aerodynamics & Stability 

The RDS Aerodynamics Module estimates parasite drag (subsonic and supersonic), drag 
due to lift, lift curve slope, and maximum lift from a user-defined input matrix. Analysis 
methods are based upon classical techniques, as defined in Raymer11. 
 
Subsonic parasitic drag is estimated by the component buildup method, using a flat-plate 
skin friction drag coefficient including the effects of Reynolds Number and surface 
roughness, and a form factor to include the effects of viscous separation.  Supersonic 
wave drag is determined by the equivalent Sears-Haack technique.  Transonic drag is 
determined by empirical fairing between Mdd and the supersonic wave drag value, using a 
cubic polynomial curve. 
 
Drag due to lift is calculated by the leading-edge suction method using lift-curve slopes 

(CL-α) calculated with DATCOM equations and graphs.  The input design lift coefficient 
(CL-design) is used to define the leading edge suction schedule.  For subsonic, thick-wing 
designs the suction schedule is modified to provide 93% leading edge suction at all lift 
coefficients below CL-design. For high aspect ratio wings, the program adjusts the leading 
edge suction schedule as a function of aspect ratio based on empirical data.  
 
This analysis method provides a drag due to lift estimation based upon the wing planform 
as defined in the input file, but assuming that the airfoil, camber, and twist will be 
optimized during preliminary design by a competent design team. This feat is 
accomplished via the quasi-empirical nature of the leading-edge suction schedule. 
 
Maximum lift is calculated using DATCOM charts for the “clean” wing, and a simplified 
flap analysis based on flapped wing areas for leading and trailing edge high-lift devices. 
 
Longitudinal stability and control are evaluated using 1-DOF equations and methods such 
as DATCOM charts. RDS calculates the neutral point, pitching moment derivative, and 
other stability parameters, which are used to estimate trim drag. This is applied as an 
adjustment to the drag-due-to-lift factor “K”. 

9.2.3 Weights  

Weights and balance are calculated using long established and well-proven empirical 
equations. For fighter, attack, transport, and bomber aircraft, equations developed by 
Vought Aircraft88,89 are employed with modifications and factors to make them more 
suitable for current and future designs. For General Aviation aircraft, equations 
developed at the AeroCommander Company (later Rockwell) are employed90. For other 
types of aircraft, these equations can be adjusted using “fudge factors” as was done for 
UAV’s in a design study by this author86. Alternatively, the simple but effective “pounds 
per square feet” method can be employed. 
 
The weights are estimated from an input design gross weight (Wdg).  This may or may not 
be the same as the design takeoff gross weight (W0), which is the total weight used for the 
group weight statement to calculate fuel available. For fighter aircraft especially, it is 
common to define Wdg as the aircraft weight after burning off some fuel.  A typical Wdg is 
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defined as the aircraft weight carrying some specified payload, with 50-60% of maximum 
internal fuel.  This may be only about 85% of W0. For further discussion and a full listing 
of weights equations, see Raymer11. 
 
No attempt is made herein to perform actual structural analysis. This follows the time-
honored, classical means of aircraft weights analysis during the conceptual design stage. 
This is done for two reasons. First, the aircraft is not yet defined in enough detail to 
identify all the major structural components, nor are the loads known in any substantial 
detail. Second, even if it were possible to identify all the structural components and 
determine their critical sizing loads, that would only account for the portion of weights 
associated with structural strength.  
 
There are many other things that cause weight, ranging from complicated aeroelastic 
effects to skin minimum gage requirements to thicknesses of finishes and coatings. To 
include these, any weight estimation method requires a substantial empirical aspect. 
There are reliable and proven statistical equations to estimate the entire weight of 
components such as wings and tails whereas this author is unaware of any proven 
equations to estimate the incremental weight of such components after the structural 
weight is determined separately. 
 
Nor should the equations used herein be viewed as pure “blind” statistics. They were 
developed by starting with a simplified geometry of the various components, applying 
simplified loads, and determining skin thicknesses and finally required material volumes 
based on classical structural analysis equations. This resulted in purely analytical 
equations for calculating weight. To better reflect the realities of actual aircraft, the 
coefficients of these equations were adjusted by a least-squares process to better match 
data on dozens of existing aircraft. 

9.2.4 Propulsion 

Propulsion analysis includes installation analysis for jet engine thrust and specific fuel 
consumption, and propeller thrust and specific fuel consumption for piston-prop engines.  
Jet engine installation analysis takes an uninstalled engine file and applies corrections for 
pressure recovery, bleed, inlet drag, and nozzle drag. Defaults are provided for the 
standard MIL-E-5008B reference pressure recovery schedule and typical actual pressure 
recovery schedules for various types of inlets. Part-power data can be included as input 
tables, corrected for installation, or can be approximated by an analytical approximation 
developed for this author by J. Mattingly (see Raymer11). 
 
Propeller analysis calculates thrust and specific fuel consumption from inputs for 
horsepower and brake specific fuel consumption as functions of altitude, propeller 
efficiency as a function of Advance Ratio (J), and static thrust coefficient ratio as a 
function of power coefficient. Analysis includes a blockage adjustment for the effect of 
the nacelle behind the propeller.  A propeller tip Mach number correction is employed, 
along with scrubbing, cooling, and miscellaneous drag adjustments. Static thrust is 
estimated, then an empirical fairing is used between the static value and the forward flight 
thrust results. 
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9.2.5 Cost 

For cost analysis of the development and procurement (purchase) phases of aircraft 
acquisition, equations developed by the RAND Corporation are used. These are known as 

DAPCA, the Development and Procurement Costs of Aircraft model91. DAPCA is notable 
in that it seems to provide reasonable results for several classes of aircraft including 
fighters, bombers, and transports. 
 
DAPCA estimates the hours required for developmental research, design, and engineering 
and for production as broken out into engineering, tooling, manufacturing, and quality 
control groups. These are multiplied by the appropriate hourly rates to yield costs. 
Development support, flight-test, and manufacturing material costs are directly estimated 
by DAPCA but must be corrected to reflect inflation in these areas. As DAPCA is 
empirical in nature, it requires knowledgeable “fudge-factoring” to get good results for a 
specific class of aircraft.  
 
For operating expenses RDS employs tabular buildup methods, defining expected costs in 
future years based on historical data and anticipated operations, and multiplying these 
costs by the expected inflation rates. 

9.2.6 Performance 

RDS uses equations derived from physics (primarily F=ma) to calculate the commonly-
used aircraft performance measures including: 

 

• Flight Envelope 

• Range Performance (nmi/lb fuel) 

• Loiter Performance (seconds/lb fuel) 

• Climb (Rate, angle,  and optimal schedule) 

• fs Calculation (measure of climb fuel efficiency) 

• Ps  (Specific Energy) 

• Turn Rate 

• V-n & Gust Response 

• Takeoff (ground roll, obstacle clearance, or Balanced Field Length) 

• Landing  

• Acceleration (time and distance) 
 
These can all be employed as performance constraints in optimization, with must-meet 
values specified by user input. Equation derivations can be found in Raymer11. 

9.2.7 Sizing 

Sizing is the process of calculating the required takeoff gross weight of a new design to 
perform some given mission.  Mission analysis determines the range capability of a 
design (new or existing) where the design takeoff gross weight is known and 
unchangeable.  Both are done in RDS using a detailed mission model defined by the user. 
RDS mission and range analysis is highly sophisticated and can include factors such as 
headwind, stall margin, service ceiling, and maximum descent rate, and it allows in-the-
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loop optimization of speeds, altitudes, and climb schedules. Such mission complexity is 
required to be suitable for use on real aircraft projects. 
 
Virtually all types of mission segments are available, allowing the user to build a mission 
model of any type desired (orbital insertion is not currently supported, but may be added 
soon!). Up to 50 mission segments can be used allowing great detail in the mission 
modeling. Default mission models are available including fighter, attack, general 
aviation, and commercial transport. Weight drops and refuels are also supported. 
 
Velocities can be entered as true airspeed, calibrated airspeeds, or as Mach number. 
Alternatively, RDS-Professional can find optimal altitudes and velocities for cruise and 
loiter.  RDS checks to ensure that speeds are neither below stall speed at that altitude, nor 
above maximum speed at that altitude and power setting. If either is found, RDS fixes it 
by changing velocity. This also permits setting a desired power setting and letting RDS 
find the resulting aircraft speed. Separate stall margins for cruise and loiter are supported. 
Headwinds and non-standard atmospheric models can be applied. 
 
Sizing includes the use of a range credit for climbs and descents.  In the case of climbs, 
the distance required to perform the climb is calculated, saved and subtracted from the 
next cruise segment. During a descent, the program can calculate descent rate and the 
range credit for descent, and can determine best descent speed to maximize descent 
range. 
 
Rather than perform sizing in which the aircraft weight is parametrically varied until a 
desired range is attained, the reverse process can be performed using the same mission 
model. This finds the range that will be attained by the as-drawn aircraft. 

9.2.8 Brief Survey of Other Aircraft Design Programs 

This research effort has been done exclusively using the RDS-Professional computer 
program which is developed and marketed by this author. Other integrated design-
analysis codes exist, some of which are widely used. A brief overview of several is 
provided below, based on publicly available information (this information may be 
incomplete or out of date, and the reader is referred to the organizations providing these 
codes for better information). 

9.2.8.1 ACSYNT 

ACSYNT (AirCraft SYNThesis) grew out of a sizing code started many years ago at 
NASA-Ames, and now includes modules and features developed by a variety of 
companies and universities. It runs on workstations and has sophisticated sizing and 
optimization capabilities, and includes full vehicle analysis including aerodynamics, 
weights, propulsion, performance, cost, etc. ACSYNT has a parametric design capability 
in its CAD module. It is considered an “experts” code requiring training and learning 
time to use it properly. 
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9.2.8.2 AAA 

Built on the aircraft design textbook series of Jan Roskam, AAA (Advanced Aircraft 
Analysis) runs on workstations. There is also a PC version. AAA contains full vehicle 
analysis with special emphasis on stability and control. It uses a commercial CAD 
package. It offers design and analysis capabilities at a simplistic “Level One” where 
minimal inputs are required, and at a better “Level Two” more like RDS and the other 
codes described here. 

9.2.8.3 FLOPS 

FLOPS (Flight Optimization System) is a Fortran 77, workstation-based code with 
capabilities for conceptual and preliminary design and evaluation of advanced aircraft 
concepts. It was developed over a 20-year period with funding from NASA-Langley, and 
is available to organizations not competing with the US aerospace industry. It is widely 
used in university MDO development, as well as by aerospace firms and government 
agencies. It apparently does not have a CAD module but accepts inputs from them. 

9.2.8.4 PIANO 

A commercially-developed code from the UK, Piano is largely aimed at conventional 
configuration, subsonic commercial transports, especially in its CAD, weights, and 
aerodynamic modules.The aircraft is defined by roughly 240 input parameters in a tabular 
form. Piano includes some two-variable parameteric study capability, and a multivariable 
optimizer based on a form of zeroth-order stepping search using mass, wing area, thrust, 
aspect ration, and sweep as variables (t/c, taper, and flaps are also available but not 
recommended). 

9.2.8.5 IDAS 

Developed at Rockwell International during the 1980’s, this program integrated earlier 
codes into a user-friendly, workstation-based package with full capabilities for 3-D 
design layout, analysis, sizing, and optimization. IDAS (Integrated Design and Analysis) 
incorporated the sophisticated Rockwell Vehicle Sizing Program (VSP) and this author’s 
Configuration Development System92 (CDS, later renamed CDM), plus aerodynamics, 
weights, and propulsion modules crafted from several sources. IDAS/CDM is noteworthy 
in its sophisticated implementation of a wide suite of conceptual design-specific routines. 
These unique tools allow rapid creation of a credible aircraft configuration including 
Bezier-lofted surfaces and complete internal definition (cockpit, payload, fuel tanks, 
engine, inlets, major subsystems, structure, etc). Both the X-31 and the B-1B were 
designed using CDM in the conceptual phase. Neither IDAS nor CDM are publicly 
available, and both are clearly “experts” codes. 



 136 

9.3 APPENDICE C – TEST-CASE RUN MATRIX 
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1 Ftr $ 34.1m 20106 OSD Abs

2 CivB Wo 188.1k 16254 OSD Abs Bad Civ Tr Design

3 GA Wo 2099 7398 OSD Abs fixed-size engine -no T/W
4 UAV Wo 6493 2514 OSD Abs No T/W, No fus FineNess

5 Ftr $ 38.6m 81 OSD Abs 2 variables - like carpet
6 CivB Wo      <see #47> OSD Abs won't run - can't meet perf 

7 GA Wo 2165 54 OSD Abs 2 variables

8 UAV Wo 7104 63 OSD Abs 2 variables

9 Civ Wo 187.9k 20546 OSD Abs Civ="Good" Original Good Design
10 CivB Wo 211.6k 22842 OSD Abs CivB="Bad" 20% var range - too small

11 Ftr $ 34.6m 10000 Mont Abs

12 CivB Wo 192.3k 10000 Mont Abs Expanded Variable Range
13 GA Wo 2109 10000 Mont Abs

14 UAV Wo 6512 10000 Mont Abs

15 Ftr $ 34.1m 10000 Pool 92 98 Lin 1.2 5 Unif

16 CivB Wo 189.1k 10000 Pool 92 99 Lin 1.2 5 Unif Expanded Variable Range
17 GA Wo 2107 10000 Pool 91 99 Lin 1.2 5 Unif

18 UAV Wo 6490 10000 Pool 77 88 Lin 1.2 5 Unif

19 Ftr $ 34.4m 10000 Tmnt 47 91 Lin 1.2 5 Unif

20 CivB Wo 190.2k 10000 Tmnt 54 99 Lin 1.2 5 Unif Expanded Variable Range
21 GA Wo 2109 10000 Tmnt 54 87 Lin 1.2 5 Unif

22 UAV Wo 6522 10000 Tmnt 58 99 Lin 1.2 5 Unif

23 Ftr $ 34.7m 10000 Roult 23 41 Lin 1.2 5 Unif
24 CivB Wo 190.6k 10000 Roult 23 73 Lin 1.2 5 Unif Expanded Variable Range

25 GA Wo 2124 10000 Roult 30 36 Lin 1.2 5 Unif

26 UAV Wo 6527 10000 Roult 23 58 Lin 1.2 5 Unif

27 Ftr $ 34.1m 10000 KillQ 88 32 Lin 1.2 95 Unif
28 CivB Wo 190k 10000 KillQ 87 44 Lin 1.2 95 Unif Expanded Variable Range

29 GA Wo 2100 10000 KillQ 87 45 Lin 1.2 95 Unif

30 UAV Wo 6523 10000 KillQ 88 91 Lin 1.2 95 Unif
31 Ftr $ 34.1m 20106 OSD Abs Repeat of baseline 

32 Ftr $ 35.0m 10000 Mont Abs    "

33 Ftr $ 34.1m 10000 Pool 85 94 Lin 1.2 5 Unif    "

34 Ftr $ 34.3m 10000 Tmnt 47 91 Lin 1.2 5 Unif    "
35 Ftr $ 34.6m 10000 Roult 19 38 Lin 1.2 5 Unif    "

36 Ftr $ 34.1m 10000 KillQ 88 30 Lin 1.2 95 Unif    "
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37 Ftr $ 35.0m 10000 Roult 20 31 ^2 1.2 5 Unif test of MOM weights

38 Civ Wo 191K 10000 Roult 19 69 ^2 1.2 5 Unif    "

39 Ftr $ 34.8m 10000 Roult 21 32 ^4 1.2 5 Unif    "

40 Civ Wo 192.6k 10000 Roult 22 43 ^4 1.2 5 Unif    "
41 Ftr $ 35.1m 10000 Roult 23 43 Cos 1.2 5 Unif    "

42 Civ Wo 190.2K 10000 Roult 23 77 Cos 1.2 5 Unif    "

43 Ftr $ 34.4m 10000 Pool 88 99 Lin 1.2 5 Bisc
44 Civ Wo 188.8k 10000 Pool 95 98 Lin 1.2 5 Bisc

45 Ftr $ 34.1m 10000 Pool 86 88 Lin 1.2 5 Prm

46 Civ Wo 189.2k 10000 Pool 92 98 Lin 1.2 5 Prm

47 CivB Wo 221k 57 OSD Abs 2 variables, no perf#5
48 Ftr $ 34.3m 10000 Pool 90 84 Lin 1to2 5 Unif Simulated Anneal

49 Civ Wo 188.4k 10000 Pool 96 98 Lin 1to2 5 Unif    "

50 Ftr $ 34.4m 10000 Tmnt 41 88 Lin 1to2 5 Unif    "

51 Civ Wo 189.8k 10000 Tmnt 43 83 Lin 1to2 5 Unif    "
52 Ftr $ 34.1m 10000 Pool 88 94 Lin 1.2 5 Unif No Elitism

53 Civ Wo 189.0k 10000 Pool 80 86 Lin 1.2 5 Unif No Elitism

54 Ftr Wo 36345 19054 OSD Abs {price $34.1m} Weight as MOM
55 Ftr Wo 36970 10000 Roult 22 43 Lin 1.2 5 Unif    "

56 Ftr $ 34.1m 11500 Pool 99 99 Lin 1.2 5 Unif longer runs - 50k

57 Civ Wo 189k 14500 Pool 98 99 Lin 1.2 5 Unif both stopped by BitStAff

58 UAV Wo 6495 10000 Pool 79 99 Lin 1.2 5 Unif No Elitism
59 Ftr $ 34.1m 10000 Pool 88 94 Lin 1.2 5 Unif Elitism=50

60 Civ Wo 188.0k 10000 Pool 99 99 Lin 1.2 5 Unif Elitism=50 - stopped

61 Ftr $ 34.1m 10000 Pool 99 98 Lin 1.2 5 Unif Pool=5%-stopped at 6000

62 Ftr $ 34.3m 10000 Pool 55 88 Lin 1.2 5 Unif Pool=50%
63 Ftr $ 34.8m 10000 Pool 37 95 Lin 1.2 5 Unif Pool=75%

64 Civ Wo 189.3k 10000 Tmnt 31 87 Lin 1.2 62 Unif mutation 50 (62%)

65 Civ Wo 188.9k 10000 Tmnt 45 89 Lin 1.2 21 Unif mutation 200 (21%)
66 Civ Wo 188.7k 10000 Tmnt 52 91 Lin 1.2 8 Unif mutation 600

67 Ftr $ 34.2m 10000 Pool 98 94 Lin 1.2 5 Unif Population 50 - stopped

68 Ftr $ 34.1m 10000 Pool 99 98 Lin 1.2 5 Unif Population 250 - stopped

69 Civ Wo 188.9k 10000 KillQ 96 75 Lin 1.2 62 Unif mutation 50 (62%)
70 Civ Wo 192.0k 10000 KillQ 99 92 Lin 1.2 21 Unif mutation 200 -stopped

71 Civ Wo 189.4k 10000 KillQ 99 98 Lin 1.2 8 Unif mutation 600 -stopped
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72 Ftr $ 34.3m 20360 Mont Hybrid-4 gens then OSD

73 Ftr $ 34.2m 21764 Pool Hybrid-4 gens then OSD

74 Ftr $ 34.5m 19334 Tmnt Hybrid-4 gens then OSD
75 Ftr $ 34.2m 42562 Tmnt Hybrid-20 gens then OSD

76 Ftr $ 34.2m 23708 KillQ Hybrid-4 gens then OSD

77 Ftr $ 38.3m 10000 Pool 85 98 Lin 1.2 5 Unif No Finess Ratio (7 var)

78 CivB Wo 189.0k 10000 Pool 87 98 Lin 1.2 5 Unif No Finess Ratio
79 GA Wo 2106 10000 Pool 80 99 Lin 1.2 5 Unif No Finess Ratio

80 Ftr $ 37.8m 10000 Pool 70 92 Lin 1.2 5 Unif No f,cl-d (6 variables)

81 Ftr $ 38.2m 10000 Pool 75 97 Lin 1.2 5 Unif No f,cl-d,t/c (5 variables)
82 Ftr $ 38.3m 10000 Pool 71 98 Lin 1.2 5 Unif No f,cl-d,t/c,taper (4)

83 Ftr $ 38.5m 10000 Pool 62 88 Lin 1.2 5 Unif No f,cl-d,t/c,taper,swp (3)

84 Ftr $ 38.6m 6561 OSD No f,cl-d (6 variables)

85 Ftr $ 38.6m 2835 OSD No f,cl-d,t/c (5 variables)
86 Ftr $ 38.4m 729 OSD No f,cl-d,t/c,taper (4)

87 Ftr $ 38.6m 243 OSD No f,cl-d,t/c,taper,swp (3)

88 Ftr $ 33.6m 10000 Pool 87 98 Lin 1.2 5 Unif NDV hold

89 Ftr $ 34.1m 10000 Pool 91 98 Lin 1.2 5 Unif NDV hold-no smaller

90 Ftr $ 33.7m 10000 Pool 96 87 Lin 1.2 5 Unif Landing=3000,Ps=4
91 Ftr $ 32.9m 10000 Pool 99 99 Lin 1.2 5 Unif NDV hold L=3000,Ps=4

92 Civ Wo 187.6k 10000 Pool 91 99 Lin 1.2 5 Unif NDV hold

93 Civ Wo 202.9k 10000 Pool 91 0.4 Lin 1.2 5 Unif Span limit=110ft

94 Civ Wo 193.0k 10000 Pool 84 75 Lin 1.2 5 Unif Diameter limit=13.5ft
95 Ftr $ 37.0m 10000 Pool 86 0.2 Lin 1.2 5 Unif Length limit=54ft (base)

96 Ftr $ 34.5m 10000 Pool 66 75 Lin 1.2 5 Unif Span limit=35ft base=38.4

97 Civ Wo 202.6k 10000 Pool 91 97 Lin 1.2 5 Unif Mcruise=.9 - high sweep
98 Civ Wo 299.8k 10000 Pool 80 0.2 Lin 1.2 5 Unif Pitchup-subsonic Mcr=.9

99 UAV Wo 6493 10000 Pool 76 98 Lin 1.2 5 Unif Pitchup - transsonic

a0 UAV Wo 6493 10000 Pool 81 99 Lin 1.2 5 Unif taper=.2

a1 GA Wo 2130 10000 Tmnt 59 56 Lin 1.2 5 Unif Diameter limit=4.2ft
a2 GA Wo 2087 10000 Tmnt 59 88 Lin 1.2 5 Unif Remove Tail Scaling

a3 GA Wo 2097 10000 Tmnt 57 86 Lin 1.2 5 Unif Remove Gear Scaling

a4 CivB Wo 187.9k 10000 Pool 80 97 Lin 1.2 5 Unif Remove Gear Scaling
a5 CivB Wo 190.0k 10000 Pool 82 91 Lin 1.2 5 Unif Remove Tail Scaling

a6 CivB Wo 190.0k 10000 Pool 82 91 Lin 1.2 5 Unif NDV hold
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9.4 APPENDICE D – SAMPLE CASE  

Tournament Optimization of Civil Transport  
• Two Generations,  Population of 10 

 

RDS MULTIVARIABLE OPTIMIZATION HISTORY   
METHOD: TOURNAMENT (1v1 competition to breed) [.GA3] 

FPS Units   

Required performance values 

9842.52 9842.52  5  8.1  6  1  

 

Key to printout: 

Variation #, Gene String 

T/W, W/S, A, Sweep, Taper, t/c, Fuselae Fineness, CL-design 

MEASURES OF MERIT (Wo,We,Wf,Price,LCC,NPV,IRR) 

PERFORMANCE RESULTS (up to 20 items)   Yes if performance met 

 

INITIAL POPULATION RANDOMLY GENERATED 

1 , 110000110110101000011111100000001000111010010111 

 .380259, 122.0692, 5.269842, 39.87302, .2507937, .1020952, 13.16134, 

.5203175 

 229355, 124993.6, 70411.15 

 8517.375, 6733.47, 7.505166, 50.99729, 3.299648, 57.82096, No 

Wing Span= 99.5061217492389 

Fus Length= 165.775057275502 

Diameter= 12.5956045361624 

 

2 , 000000010000000010001010111010010001100101110100 

 .27536, 96.29905, 4.063492, 34.53968, .2920635, .1089524, 11.65923, 

.6215873 

 262931.8, 123777.9, 105203.7 

 8368.22, 5310.422,-13.67319, 16.65125,-10.45968, 35.84304, No 

Wing Span= 105.331989719927 

Fus Length= 160.019685329937 

Diameter= 13.7247172275394 

 

3 , 010101100110011101000011100011001101011000010100 

 .3212533, 111.2186, 4.920635, 32.76191, .2555556, .1059048, 10.72936, 

.5098413 

 210415.3, 110274.5, 66190.55 

 8610.917, 6021.699,-3.638832, 31.74504,-3.523738, 45.38945, No 

Wing Span= 96.4851441744784 

Fus Length= 140.563998647027 

Diameter= 13.1008797397607 

 

4 , 111100001100011111000001011111010111010001100101 

 .4064838, 93.5864, 4.984127, 32.25397, .2492063, .1135238, 10.22865, 

.5692064 

 227611.3, 121652.2, 72008.78 

 5387.423, 5213.629, 10.11452, 45.63326, 7.098994, 67.33411, Yes,New 

Best 

Wing Span= 110.09942582291 

Fus Length= 139.762648775157 

Diameter= 13.6638388994439 
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5 , 100010010000000111101010110110011111100100001001 

 .3496635, 96.29905, 4.222222, 42.66667, .2857143, .119619, 11.5877, 

.4714286 

 224631.5, 117996.7, 72684.65 

 6916.048, 5661.359,-1.345271, 38.84706,-1.965849, 54.11435, No 

Wing Span= 99.2418663256817 

Fus Length= 151.224713845776 

Diameter= 13.0504460898384 

 

6 , 010011011100101010001000000001101001011001001110 

 .3168825, 104.437, 5.333333, 34.03175, .2015873, .1272381, 10.80088, 

.4888889 

 207225.9, 108765.5, 64510.14 

 8076.764, 5751.098,-2.346864, 29.22845,-1.832376, 46.24191, No 

Wing Span= 102.871302772553 

Fus Length= 140.472076888032 

Diameter= 13.0056084753587 

 

7 , 110010010001001001101100111111001011111000101010 

 .3846298, 96.97721, 4.285714, 43.17461, .3, .104381, 13.01828, .5866667 

 237148.2, 127407.4, 75790.58 

 6381.067, 5696.405, 5.351473, 47.8369, 2.300084, 62.75151, No 

Wing Span= 102.373289950678 

Fus Length= 166.412392712085 

Diameter= 12.7829750080982 

 

8 , 100101101111111010100111011011110111000000001001 

 .3562197, 117.3221, 5.84127, 41.90476, .2428571, .1379047, 9.012659, 

.4714286 

 213413.9, 113344.1, 66119.52 

 8866.854, 6607.014, 3.224084, 45.57382, 2.193734, 54.49562, No 

Wing Span= 103.080162807091 

Fus Length= 125.723017662626 

Diameter= 13.9496027852347 

 

9 , 111110111000010101001000110000101111010101100111 

 .4108546, 123.4255, 4.666667, 34.03175, .2761905, .1318095, 10.51477, 

.5761905 

 231952.1, 120479.4, 77522.48 

 7281.957, 6383.75, 5.590257, 55.21342, 2.624485, 63.0225, No 

Wing Span= 93.6483257676556 

Fus Length= 143.256643879244 

Diameter= 13.6243270639625 

 

10 , 010110000100110000111111101111000101001011101011 

 .3234387, 88.1611, 5.52381, 48, .2746032, 9.980952E-2, 9.799478, 

.5901588 

 220789, 120919.5, 65919.21 

 7300.002, 5586.925, 1.425374, 34.3455, .8175545, 52.15464, No 

Wing Span= 117.616849490196 

Fus Length= 134.453949748617 

Diameter= 13.7205216463413 
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POPULATION (# 1) OF  10 CREATED AND ANALYZED 

BEST MOM =  227611.3 FOR VARIATION # 4 

DESIGN VARIABLES OF BEST:   

.4064838, 93.5864, 4.984127, 32.25397, .2492063, .1135238, 10.22865, 

.5692064 

 10% MEET ALL REQUIREMENTS 

GENE STRING BIT AFFINITY (0=RANDOM 100%=IDENTICAL):  22.91668 

 

TOURNAMENT BEGINS ! (Hopeful number:weighted MOM) 

Hopeful 1 # 5: 323469.5  

Hopeful 2 # 8: 307316    

Winner is  8 

Hopeful 1 # 6: 298405.3  

Hopeful 2 # 8: 307316    

Winner is  6 

   Parent 1: 100101101111111010100111011011110111000000001001 

   Parent 2: 010011011100101010001000000001101001011001001110 

      Child: 110001011110101010100100001011100011010000001001 

      Child: 100111101111111010001001001011101111001000001000 

Hopeful 1 # 7: 284577.8  

Hopeful 2 # 2: 378621.8  

Winner is  7 

Hopeful 1 # 9: 278342.5  

Hopeful 2 # 4: 227611.3  

Winner is  4 

   Parent 1: 110010010001001001101100111111001011111000101010 

   Parent 2: 111100001100011111000001011111010111010001100101 

      Child: 110000000100011001000001111111000111110001101110 

      Child: 110110010101001111000100111111010011011000101111 

Hopeful 1 # 3: 302998    

Hopeful 2 # 2: 378621.8  

Winner is  3 

Hopeful 1 # 1: 275226    

Hopeful 2 # 5: 323469.5  

Winner is  1 

   Parent 1: 010101100110011101000011100011001101011000010100 

   Parent 2: 110000110110101000011111100000001000111010010111 

      Child: 110100110110011100001011100001001101011010010110 

      Child: 110101100110011101010011100000001100011000010110 

Hopeful 1 # 3: 302998    

Hopeful 2 # 9: 278342.5  

Winner is  9 

Hopeful 1 # 1: 275226    

Hopeful 2 # 9: 278342.5  

Winner is  1 

   Parent 1: 111110111000010101001000110000101111010101100111 

   Parent 2: 110000110110101000011111100000001000111010010111 

      Child: 111100110000110001011011100000101001111001100111 

      Child: 111110110110010001001011110000101110111111000111 

Hopeful 1 # 8: 307316    

Hopeful 2 # 9: 278342.5  

Winner is  9 

Hopeful 1 # 7: 284577.8  

Hopeful 2 # 1: 275226    

Winner is  1 
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   Parent 1: 111110111000010101001000110000101111010101100111 

   Parent 2: 110000110110101000011111100000001000111010010111 

      Child: 111110111010110101001101100000101111011110000111 

      Child: 110000110010010100001111110000001100011011100111 

  

BEGIN SECOND GENERATION ANALYSIS 

1 , 100111101111111010001001001011101111001000001000 

 .3605905, 117.3221, 5.84127, 34.28571, .2174603, .1318095, 9.584891, 

.4679365 

 211186.3, 112030.2, 65205.94 

 8268.517, 6319.771, 4.24267, 43.2206, 2.843147, 55.14505, No 

Wing Span= 102.54079627236 

Fus Length= 130.53564987749 

Diameter= 13.6188972349498 

 

2 , 110001011110101010100100001011100011010000001001 

 .3824444, 105.7933, 5.333333, 41.14286, .2174603, .1226667, 10.15712, 

.4714286 

 221726.6, 119318.7, 68457.64 

 6999.794, 6026.978, 7.786603, 48.79808, 4.775083, 62.02418, No 

Wing Span= 105.725355994146 

Fus Length= 137.90186483963 

Diameter= 13.5768624292498 

 

3 , 110110010101001111000100111111010011011000101111 

 .3933714, 99.68986, 4.476191, 33.01587, .3, .1104762, 10.72936, .604127 

 227766, 120184.7, 73631.06 

 5845.558, 5425.399, 6.008014, 45.06517, 3.216, 63.27497, No 

Wing Span= 101.128428517945 

Fus Length= 144.322217342599 

Diameter= 13.451154146012 

 

4 , 110000000100011001000001111111000111110001101110 

 .380259, 88.1611, 4.793651, 32.25397, .3, .1013333, 12.51758, .600635 

 226319.2, 122420.8, 69948.21 

 5510.879, 5066.134, 7.36365, 36.99208, 4.710142, 61.09959, No 

Wing Span= 110.931635514749 

Fus Length= 159.61183513913 

Diameter= 12.7510132355799 

 

5 , 110101100110011101010011100000001100011000010110 

 .391186, 111.2186, 4.920635, 36.8254, .2507937, .1051429, 10.72936, 

.5168254 

 227438.6, 121558.9, 71929.54 

 7305.543, 6144.789, 7.305083, 49.97638, 3.738399, 61.98651, No 

Wing Span= 100.312242291144 

Fus Length= 144.253103816387 

Diameter= 13.4447126104552 

 

6 , 110100110110011100001011100001001101011010010110 

 .3890006, 122.0692, 4.888889, 34.79365, .252381, .1059048, 10.87241, 

.5168254 

 227827.2, 120577.2, 73299.72 

 8038.021, 6526.692, 5.252568, 50.42739, 2.006806, 58.71058, No 

Wing Span= 95.52229881834 

Fus Length= 145.615891996229 

Diameter= 13.3931526296248 
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7 , 111110110110010001001011110000101110111111000111 

 .4108546, 122.0692, 4.539682, 34.79365, .2761905, .1310476, 13.51899, 

.4644445 

 235270.9, 124133.4, 77187.29 

 7548.76, 6513.693, 7.098033, 55.35388, 2.685565, 62.6572, No 

Wing Span= 93.5392292367575 

Fus Length= 170.203582751528 

Diameter= 12.5899660729315 

 

8 , 111100110000110001011011100000101001111001100111 

 .4064838, 118.0002, 5.555556, 38.85714, .2507937, .1272381, 13.08981, 

.5761905 

 229106.6, 125003.6, 70152.69 

 7376.301, 6414.033, 12.58991, 56.21288, 7.359319, 65.74718, Yes,New 

Best 

Wing Span= 103.858269856118 

Fus Length= 165.113985288964 

Diameter= 12.6139294976993 

 

9 , 110000110010010100001111110000001100011011100111 

 .380259, 119.3566, 4.634921, 35.80952, .2761905, .1051429, 10.94394, 

.5761905 

 226848, 119566.1, 73331.73 

 7822.668, 6360.712, 3.040273, 48.17245, .2064644, 57.14243, No 

Wing Span= 93.8567464423754 

Fus Length= 146.044571666202 

Diameter= 13.3447861367965 

 

10 , 111110111010110101001101100000101111011110000111 

 .4108546, 124.7819, 5.68254, 35.30159, .2507937, .1318095, 11.15853, 

.4644445 

 225844.3, 121364.1, 70529.94 

 7835.091, 6680.297, 11.87431, 56.84501, 7.041446, 64.74426, Yes,New 

Best 

Wing Span= 101.414503217791 

Fus Length= 147.730105919846 

Diameter= 13.2392095915408 

 

POPULATION (# 2) OF  10 CREATED AND ANALYZED 

BEST MOM =  225844.3 FOR VARIATION # 10 

DESIGN VARIABLES:  .4108546, 124.7819, 5.68254, 35.30159, .2507937, 

.1318095, 11.15853, .4644445 

 20% MEET ALL REQUIREMENTS 

GENE STRING BIT AFFINITY (0=RANDOM 100%=IDENTICAL):  39.58334 

 

 

Gen#        Best MOM  %Meeting Perf  Gene Bit-String Affinity 

 1        227611.3        10             22.91668    

 2        225844.3        20             39.58334    
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