

Design Drivers, Desires, & Assumptions

Drivers:

Insanely thin atmosphere (1.6% of Earth's sea level standard day)
Reduced gravity (.379 of Earth) so net effect: need ~23x the lift
Watch propeller tips – speed of sound is only 788 fps (vs. 1117)

Desires:

Pressurized cabin with excellent field of view
VTOL (probably required anyway due to that 1.6%)
Good ground clearance needed for off-airbase operations

Assumptions/Decisions:

•Wing & battery-electric props for forward flight •Wing-integral solar cells for recharging & augmentation in flight •CO-O₂ rockets for VTOL *(defined by Jim French; thanks Jim!)* •Consider but don't depend upon onboard propellant extraction* •2030 timeframe, study will determine how much the technologies must improve to make this possible

*carbon monoxide and oxygen can be produced by electrolysis from the Martian atmosphere Copyright C 2021 by D. P. Raymer All Rights Reserved 7 1/17/2021

			G		8 . 194		0			
	[rpc]				14	P 7				
	Wing-	Wing- Outboard	Wing - Aero Reference	Vertical Tail	Wing-	Wing- Outboard	Wing - Aero	Vertical Tail		
Area Sref	1000	1080	2079.3	20	92.9	100.34	193.17	1.86		
Aspect Ratio	20	38.401	57.221	3.2	20	38.401	57.221	3.2		
Taper Ratio	1	0.5	0.526	1	1	0.5	0.526	1		
Sweep (LE)	0	0.995	0.714	0	0	0.995	0.714	0		
Sweep (c/4)	0	0.497	0.402	0	0	0.497	0.402	0		
Thickness t/c	17.50%	17.50%	17.50%	15%	17.50%	17.50%	17.50%	15%		
Span	141.421	203.649	344.934	8	43.105	62.072	105.136	2.438		
Root Chord	7.071	7.071	7.903	2.5	2.155	2.155	2.409	0.762		
Tip Chord	7.071	3.535	4.154	2.5	2.155	1.078	1.266	0.762		
Mean Chord	7.071	5.5	6.222	2.5	2.155	1.676	1.897	0.762		
Y-bar	35.355	45.255	77.295	4	10.776	13.794	23.56	1.219		
- Advanc - Differei	ed flow	control o st for yay	devices u w control	and roll a	itch & ro augment	II control ation	, or else	large elevons		

OW excl batts 0.69								
ture/GLOW 0.43	Weight	Loc	Moment		Weight	Loc	Moment	
	lbs	ft	ft-lbs		lbs	ft	ft-lbs	
STRUCTURES	2732.0	7.0	18641	EQUIPMENT	640.0		4220	
vving	18/1.4	1.2	13556	Flight Controls	40.0	5.5	220	
Vertical Tails	30.3	18.4	559				0	
Vving Struts	125.0	0.4	1049	Destrical (inclustuators)	100.0	6.0	600	
Fusional (root of)	200.0	4.1	1040	Avionica (Inclactuators)	20.0	6.0 5.0	100	
Conony	73.2	9.2	100	Processization and AC	20.0	5.0	400	
Nacelle Inbd	78.0	7.3	560	Solar Cells & equip	300.0	7.0	2100	
Nacelle Outbd	73.5	7.5	551	Furnishings & Equipment	100.0	8.0	800	
Nuccine Outbu	0.0	7.0	0	r amoningo a Equipment	100.0	0.0	000	
	0.0		0	(% We Allow ance)	5.0			
Landing Gear	151.3	4.9	748	Empty Weight Allow ance	195.8	6.8	1329	
PROPULSION	544.3		3719	TOTAL WEIGHT EMPTY	4112.1	6.8	27909	
Electric Motors (4)	52.2	7.0	368					
Motor Installation	40.0	7.0	282	USEFUL LOAD	1887.9			
Engine Controllers	41.8	7.0	294	Crew	400.0	4.1	1640	
Propeller	40.0	7.0	280	Battery Wt available	834.1	7.0	5839	
Battery Installation	200.0	7.0	1400				0	
	0.0		0	Rocket propellant	553.8	7.0	3877	
Rockets (8)	82.3	6.3	514	Payload	100.0	6.4	640	
Rocket Installation	48.0	6.3	300					
Propellant tanks	40.0	7.0	280	TAKFOFF GROSS WEIGHT	6000 0	6.7	39905	

CFD Results				
Data				
Wing drag is dominant for all cases (>90%	Parameter	MSL 2deg	105k ft 2deg	105k ft 4deg
or total drug, mon madoba drug)	CL	0.891	0.749	0.937
L/D at MSL is as high as expected	CD	0.01823	0.03456	0.04559
I/D at 10Ek ft is much lower than expected	L/D	48.88	21.67	20.55
at rosk it is much lower than expected	CD Wing	0.01679	105k ft 2deg 0.749 0.03456 21.67 0.03200 0.00052 0.00052 0.00028 0.00028 0.00025 0.00045 0.00036 ceholder" ai s discusse	0.04269
Increasing AoA at 105k ft does not give	CD Nacelle inner	0.00032	105k ft 2deg 0.749 0.03456 21.67 0.03200 0.00052 0.00028 0.00095 0.00045 0.00036 eholder" air s discussed	0.00059
higher L/D	CD Nacelle outer	0.00011		0.00053
→ I ow Re problem	CD Fuselage	0.00055	0.00095	0.00093
	CD Struts	0.00021	0.00045	0.00049
Landing gear drag is not yet included – L/D will be further reduced	CD Vertical Tails	0.00025	0.00036	0.00036
	(but thi R#-opti	s is with "plac mized airfoil a	eholder" ai s discussed	rfoil, not I below)
Copyright C 2021 by D. P. Raymer All Rights Reserved				24 1/17/2021

ADA 2deg 4deg CL 0,866 1,02 CD 0,0275 0,03265 LO 31,21 31,24 CD Wing 0,02566 0,00052 CD Nacelle inner 0,00052 0,00048 CD Fuselage 0,00054 0,00047 CD Struts 0,00036 0,00036 CD Vertical Tails 0,00036 0,00036 CD Vertical Tails 0,00036 0,00036	CFD Res	sults	
AOA 2deg 4deg CL 0,866 1,02 CD 0,02775 0,03265 L/D 31,21 31,24 CD Wing 0,02566 0,03034 CD Nacelle inner 0,00052 0,00062 CD Fuselage 0,00054 0,00048 CD Struts 0,00036 0,00036 CD Vertical Tails 0,00036 0,00036 Reference: NASA airfoil L/D: -21 Invisicd + friction L/D: -44	3D Data	a at 105k f	t V1
AOA 2deg 4deg CL 0,866 1,02 CD 0,02775 0,03265 /D 31,21 31,24 CD Wing 0,02566 0,03034 CD Nacelle inner 0,00052 0,00048 CD Nacelle outer 0,00031 0,00048 CD Struts 0,00036 0,00038 CD Vertical Tails 0,00036 0,00036 Reference: NASA airfoil L/D: -21			
AOA 2deg 4deg CL 0,866 1,02 CD 0,02775 0,03265 /D 31,21 31,24 /D Wing 0,02566 0,03034 /D Nacelle inner 0,00052 0,00062 /D Nacelle outer 0,00031 0,00048 /D Fuselage 0,00036 0,00038 /D Vertical Tails 0,00036 0,00036			
CL 0,866 1,02 CD 0,02775 0,03265 JD 31,21 31,24 CD Wing 0,02566 0,03034 CD Nacelle inner 0,00052 0,00062 CD Nacelle outer 0,00031 0,00048 CD Fuselage 0,00036 0,00038 CD Vertical Tails 0,00036 0,00036 Reference: NASA airfoil L/D: -21	AOA	2deg	4deg
CD 0,02775 0,03265 L/D 31,21 31,24 CD Wing 0,02566 0,03034 CD Nacelle inner 0,00052 0,00062 CD Nacelle outer 0,00031 0,00048 CD Fuselage 0,00036 0,00037 CD Struts 0,00036 0,00038 CD Vertical Tails 0,00036 0,00036 Reference: NASA airfoil L/D: ~21	CL	0,866	1,02
L/D 31,21 31,24 CD Wing 0,02566 0,03034 CD Nacelle inner 0,00052 0,00062 CD Nacelle outer 0,00031 0,00048 CD Fuselage 0,00054 0,00037 CD Struts 0,00036 0,00038 CD Vertical Tails 0,00036 0,00036	CD	0,02775	0,03265
CD Wing 0,02566 0,03034 CD Nacelle inner 0,00052 0,00062 CD Nacelle outer 0,00031 0,00048 CD Fuselage 0,00054 0,00047 CD Struts 0,00036 0,00038 CD Vertical Tails 0,00036 0,00036 Reference: NASA airfoil L/D: Invisicd + friction L/D: ~21	L/D	31,21	31,24
CD Nacelle inner 0,00052 0,00062 CD Nacelle outer 0,00031 0,00048 CD Fuselage 0,00054 0,00047 CD Struts 0,00036 0,00038 CD Vertical Tails 0,00036 0,00036 Reference: NASA airfoil L/D: -21 Invisicd + friction L/D: -44	CD Wing	0,02566	0,03034
CD Nacelle outer 0,00031 0,00048 CD Fuselage 0,00054 0,00047 CD Struts 0,00036 0,00038 CD Vertical Tails 0,00036 0,00036 Reference: NASA airfoil L/D: Invisicd + friction L/D: -44 -21	CD Nacelle inner	0,00052	0,00062
CD Fuselage 0,00054 0,00047 CD Struts 0,00036 0,00038 CD Vertical Tails 0,00036 0,00036 Reference: NASA airfoil L/D: Invisid + friction L/D: -44 -21	CD Nacelle outer	0,00031	0,00048
CD Struts 0,00036 0,00038 CD Vertical Tails 0,00036 0,00036 Reference: NASA airfoil L/D: Invisicd + friction L/D: ~21	CD Fuselage	0,00054	0,00047
CD Vertical Tails 0,00036 0,00036 Reference: NASA airfoil L/D: ~21 Invisicd + friction L/D: ~44	CD Struts	0,00036	0,00038
Reference: NASA airfoil L/D: ~21 Invisicd + friction L/D: ~44	CD Vertical Tails	0,00036	0,00036
Reference: NASA airfoil L/D: ~21 Invisicd + friction L/D: ~44			
	Reference: N	ASA airfoil L/D:	~21 ~44
	"	Nisicu · metion E/D.	
	enanonger en a		
	Copyrigh	t C 2021 by D. P. Raymer	All Rights Reserved

RMN	IP C	usto	m Ai	rfoils												
Ove	rvi	ew \	/2													
					R	MMP 1	50 11									
6					Ma	ax thic	kness	11.3% a	t 30.6%	chord	Мах	cambe	r 7.1%	at 55.2%	% chord	
E					RM Ma	MMP 1 ax thic	50 12 kness	12% at	30.1% cł	nord	Max	cambe	r 6.5%	at 48.4%	% chord	
Æ			+		RM Ma	MMP 1 ax thic	4 kness	14% at	22.6% cł	nord	Max	cambe	r 5.4%	at 68.7%	% chord	
E					RM Ma	MMP 1 ax thic	6 kness	16% at	28.2% cł	nord	Max	cambe	r 6.1%	at 43.7%	% chord	
		11% t/c - Re	150%		12%	t/c - Re 1	50%			14% t/c - Re 14	50%			16% t/c - R	a 150%	
CI	C	d Cm	L/D	CI	Cd	Cm	L/I	D CI	Cd	Cm	L/D	CI	С	d Ci	m L/D	
0,0	0,8980	0,01695	-0,2241	52,99 0,3	366 0,0	1542	-0,1859	47,7830	0,66746	0,0171	-0,18	39,08	0,7020	0,01902	-0,1851	36,90
2,5	1,1301	0.02220	-0,2160	59,46 1,0	2603 0,0	1082	-0,1835	59,7234	0,94100	0.0221	-0,17	50,62	0,9604	0.02071	-0,1830	46,3
7,5	1,5493	0,02808	-0,2006	55,18 1,4	625 0,0	2601	-0,1729	56,2217	1,41376	0,0268	-0,16	52,77	1,3694	0,03047	-0,1708	44,94
9,5	1,5976	0,03882	-0,1798	41,16 1,	5713 0,0	3257	-0,1597	48,2368	1,59149	0,0311	-0,16	51,22	1,4702	0,03744	-0,1602	39,27
c	Copyrigi	ht C 2021 b	y D. P. Ra	ymer All R	ights Res	served								3). Felix Fi 8 1/17/20	nger 121

RMMP Custom Airfoils	
Comments on airfoil performance V2	
Higher Re allows higher Cl _{max} , so the target of Cl _{max} >1.5 seems reasonable for the 150% air not studied).	foils (stall was
$Cm_{c/4}$ for the high-Re airfoils is even higher than for the low-Re airfoils	
Optimizer found a loophole for the 14% high-Re airfoil. Extremely thin trailing edge seems i structures.	mpractical for
L/D is much improved. Still, the whole-aircraft L/D of 44 is challenging to reach for t/c > 12% AR - W/S – t/c trade studies necessary	b.
Copyright C 2021 by D. P. Raymer All Rights Reserved	D. Felix Finger 41 1/17/2021

WING STRUCTURAL ARCHITECTURE

A. Gómez Department of continuum mechanics and structural analysis e-mail: edgomezm@ing.uc3m.es

uc3m | Universidad Carlos III de Madrid

Hexcel 8552S AS	4 3K plain	Hexcel 8552	S AS4 3K	Hexcel 855	2 IM7 3K	Hexcel 855	2 HM63 12K	Hexcel 855	2 IM7 3K
T (C)	T (C) 21 T (C) 21		T (C)	T (C) 21		21	T (C)	-54	
Durante	-/	Description	-/	Durante		Durante	-1	Durante	
ρ	g/cc 1.57	ρ	g/ee 1.57	P	1.58	ρ	g/cc 1.58	ρ	1.58
ELASTIC PROPERTIES (in plane)		ELASTIC PRO	PERTIES (in	ELASTIC PROPERTIES (in		ELASTIC PR	OPERTIES (in	ELASTIC PROPERTIE	
Property	MPa	Property	MPa	Property	MPa	Property	MPa	Property	MPa
E_1	64742	E 1	123589	E 1	151512	E_1	231319	E 1	1477
E 2	64363	E 2	138550	E 2	9308	E 2	9067	E 2	103
G_12	4964	G_12	4826	G_12	4688	G_12	5929	G_12	59
v12	0.046	v12	0.3185	v12	0.336	v12	0.316	v12	0.3
v21 c	0.054	v21 c	0.029	v21 c	0.024	v21 c	0.028	v21 c	0.0
STRENGTH PR	OPEDTIES	STRENGTH P	POPERTIES	STRENGTH P	POPERTIES	STRENGTH	PROPERTIES	STREN	GTH
Property	MPa	Property	MPa	Property	MPa	Property	MPa	Property	MPa
Fltu	769	Fltu	1928	F 1 tu	2206	F 1 tu	2489	Fltu	24
F 1 cu	844	F 1 cu	1484	F 1 cu	1731	F 1 cu	1351	F 1 cu	20
F 2 tu	753	F2tu	64	F 2 tu	64	F 2 tu	45	F 2 tu	
F 2 cu	781	F 2 cu	268	F 2 cu	286	F 2 cu	381	F 2 cu	3
E 12	56	F 12	02	F 12	91	F 12	100	F 12	

Resize t		116 20	aaacta				
	ne engine from 500	hp to	yyester 200 hr	u. 0 (4 end	gines o	f 50 hp eacl	h)
 Use Lith 	nium-Sulfur batterie	s with	n Specif	fic ener	rgy = 7(00 Wh/kg	,
Reduce	wing-span until the	e L/D r	eaches	the va	lue of 3	30.	
	• •						
	Table 2.1: Projected perform	nance ranges	of lithium-base	ed batteries at o	cell level for the	vear 2035	
		Unit	Li-Ion	LLS	Li-O-	Li-Ob almost	
	Specific Energy	Wh/kg	250,350	600-700	800-1500	600-1200	
	Specific Power	W/kg	500-600	350-500	300-400	300-400	
	Energy Density	Wh/l	600-800	300-350	1000-1700	1000-1600	
	Charge/Discharge efficiency	%	90-95	70-90	60-85	60-85	
	Cycle life	# cycles	1000-3000	1000-2500	500-1000	500-1000	
	Description		70-90	90-100	70-90	70-90	
	Degree of Discharge	70	7.15	7.14	5 10	5 10	
	Degree of Discharge Lifetime Cost (\$ 2010)	yrs. \$/kWb	7-15 250-350	7-14	5-10	5-10 300-700	
	Degree of Discharge Lifetime Cost (\$ 2010) Uncertainty	yrs. \$/kWh	7-15 250-350 low	7-14 250-500 medium	5-10 400-800 high	5-10 300-700 high	
	Degree of Discharge Lifetime Cost (\$ 2010) Uncertainty	yrs. \$/kWh	7-15 250-350 low	7-14 250-500 medium	5-10 400-800 high	5-10 300-700 high	
	Degree of Discharge Lifetime Cost (\$ 2010) Uncertainty	yrs. \$/kWh	7-15 250-350 low	7-14 250-500 medium	5-10 400-800 high	5-10 300-700 high	
	Degree of Discharge Lifetime Cost (\$ 2010) Uncertainty	% yrs. \$/kWh -	7-15 250-350 low	7-14 250-500 medium	5-10 400-800 high	5-10 300-700 high	
	Degree of Discharge Lifetime Cost (\$ 2010) Uncertainty	76 yrs. \$/kWh -	7-15 250-350 low	7-14 250-500 medium	5-10 400-800 high	5-10 300-700 high	

