Use of Computers in the
(Conceptual) Design Process

g e *‘“(“'L'H
st - DERIGN AN ?(? e
e ARCRAFT =3’é
% T CANT EVEN F“*m, e
% 'Tr-\' A EL‘T TON 2R
ilum:'l’..':.lllll.l '

Short Course Handouts by

Daniel P. Raymer
Advanced Systems Design
North American Aviation (Rockwell)
Copyright © 1984

These notes were written around 1980 as lecture notes for Lee
Nicolai and Jay Pinson’s Aircraft Design Short Course in
Dayton, Ohio. That class was organized as a series of lectures
by different experts in various areas, such as Jan Roskam for
Stability & Control and Barnes McCormick for High Lift aero.
For 5 years or so | gave a presentation on CAD in conceptual
design, and always enjoyed the chance to meet so many
smart and interesting people. Thanks, Lee!

While out of date in many areas (storage tube?) there is still-
relevant material here, and people have asked for a copy7

USE OF COMPUTERS IN THE DESIGN PROCESS

Daniel P. Raymer
Advanced Systems Design
Rockwell Internaticnal, NAAD

INTRODUCTION

[t is difficult to fully comprehend the impact
computers have had on aircraft design in the past
twenty years or so. Virtually every phase of
design in the major aerospace companies is either
"on" the computer, heavily dependent upon the
computer, or about to be put on the computer.

One yardstick of this infiltration can be found
in today's new-hire engineers. Many have never
seen, let alone mastered the slide rule. They
think nemograms are messages delivered by short

people. "Plenimeter” evokes a complete blank, as
do most of the arcane mysteries of the drafting
board. But, they can program in several

languages before they reach college, they have a
computer in the closet, and they play video games
for relaxation.

The reasons for the widespread use of
computers in the design process are obvious; time,
cost and quality.

Time savings from the use of computers are
usually the major reason for their purchase.
Computers can make repetitive calculations millions
of times faster than humans, and are {almost)
never wrong. Hand calculation of aircraft initial
sizing takes about half a day. A similar
calculation on a microcomputer program at Rockwell
takes a few seconds.

Cost savings result from time savings. Even
several hundred dollars per hour of computer

charges is a bargain if one engineer can do the

work of ten. Minicomputers can cost under twenty
dollars an hour, and microcomputers are practically
free on an hourly basis.

Quality improvement is the most important but
least recognized benefit of computers. First, the
greatly reduced design and calculation time allows
a vast increase in the number of iterations possible
with limited time and funds. Second, the use of
common computerized data bases eliminates error
propagation in the transfer of data between
functional groups. Finally, there are some design
and analysis techniques which are feasible on the
computer which would be wvirtually impossible
atherwise.

This paper will outline some fundamentals of
computers in the aircraft design process.
Emphasis will be placed on computer graphics and
computer-aided design (CAD), as opposed to
computational analysis. Also, conceptual design
rather than detail part design will he stressed.
Computer equipment will be discussed, particularly
the design stations. User interface options will be
compared. Primitive graphics capabilities will form
a foundation for more sophisticated geometry
representations and graphics mathematics. Anima-
tion and anaiysis interfaces will be discussed.
Finally, a representative computer-aided conceptual
design program will be described, highlighting the
integrated use of computer graphics and
computational analysis.

COMPUTER GRAPHICS EQUIPMENT

Bits and Bytes

A digital computer can remember whether a
guantity is a "1" or a "0". Furthermore, it can
add that quantity to ancther quantity (1 or 0).
From this small beginning comes the power to
revolutionize the design process, if not the world!

The "1" or ™" quantity is called a "bit"
{binary digit) and is physically represented by a
current being either "on" or "off". This alone can
transmit very little useful information. Instead, a
convention has been established in which eight*
bits, called one "byte", are used in the binary
(base 2} mathematical system to represent the
numbers from zere through 127, which in turn
are used to identify both characters and numerals
as shown in Table I. This "American Standard
Code for Information Interchange" (ASCIL) is used
for communication between computers and between
components of a computer, such as the central
processing unit (CPU) and the keyboard (ASCII is
the most common convention, but others such as
IBM's "EBCDIC" are also in wuse). Within the
computer, pure binary code is usually used for
arithmetic operations, with usually four bytes per
number in binary exponential notation.’

TABLE I. ASCII OODE

- [»] . 1 1 ' |
o [] ’ 1 ' » » ;LU
o .] i '] I f] [al '
p—— comrIet G':‘:'_'_‘I:"w iaw 1 ow T
’i' ; 'ﬂ pima !’“ ’ - @"| "' A Lo | ’-n
| om e 7] W - W K |
il 1 1 A Q a | a
| LT - [™] " e
sis))e | ") 2 8l |8 |*
I s BT) 3]
#pala] e — » "3 el s ¢ Tl s
o]0 . ™ STEE s N 4 1 uu T - ‘*'ll: % .
| 3 [1 3 | [T i 17
oio| ol [T Hax % 3 r . | P
LTEL L e 1] - 4| - i [l
sl ™ L |6 F oV p "
)] T o
gl : i . ; 7 G i W ¥] Iﬂi - ks
- vicam 14 w ! 7|] [e
0 L |8 H ' x h x
| -y il kY - T L] - b i
ILEE 1_ L R e e
2 |I w i . ey -n ¥ sa ra *4 I“{_ I‘E'
o i ™ * ' iz
wt njse w1 (]] 1 L T =Y
g o [15 | + . k_| L K |4
1 i L [EILE el d < - L] Le e | s
. B i i L \ ! |
4 ¥ & e 3w asl .t T -y - 7Y
i o - - M : m I_
i 0 s ET | an [*1 e] »ay nal 12
e I M e N | A N~
i “ L1] pL | Ll ad| ™ 8 lu[I'l.l'
: PAslrlsTFe e

*Usually

*#This uses only seven bits. The eighth bit
is frequently used to check for transmis-
errors, called ‘“parity” checking.

One important paramefer in computer
operation is the number of bits which can be
manipulated at one time. Most personal computers
are "eight-bit" machines, in that eight bits are
handled at one time. Some personal computers and
minicomputers are l6-bit - i.e., two bytes can be
manipulated at one time. Most minicomputers are
16 or 32-bit, while most main-frame computers are
32, 60, or 64-bitt. The more bits handled at one
time, the better, in terms of arithmetic speed and
communication speed to dewvices such as disks and
printers. A “word" is defined as however-many
bits that computer can handle at one time - i.e.,
for a 32-bit machine, a word is 32 bits, or 4
bytes.

Another important computer parameter is the
amount of memory available in "core" - i.e. without
resorting to a mass storage device such as disks,
magnetic tapes, or (horrers!} punched cards.
Memory size is measured in thousands (K)¥tf of

bytes. Remember that one byte holds one
character, or can hold eight digits (bits) of a
binary aumber. A typical memory size of a

minicomputer or recent personal computer is 32K or
64K. Some of the latest main frames can hold over
one megabytetit. This memory size is extremely
important because it sets upper limits to program
length and data access without time-consuming disk
access.

Some computers have a feature called "virtual
memory" which allows the computer to pretend it
has more memory than it actually has. A program
too big to fit in the core memory is read in
piecewise, so that only the parts of the program
actually being executed are in core. The other
parts of the program are automatically read in from
the disk as they are needed. Computers without
this feature rely on Toverlays". Here the
programmer must break the program into parts and
bring in the appropriate part with specific
programmed instructions.

A final parameter important to computer-aided
design is speed. This is not one clear number,
but is composed of many elements. Most basic of
these is clock, or cycle speed. This speed is
controlled by an internal clock which pulses at
regular intervals, controlling timing of operations.
Cycle times in the hundreds of nanoseconds are
typical. Another important factor relating to
speed i{s the time required for arithmetic

operations. Still another factor is disk access
time, and another is communications time Uo
terminals or other peripherals. Due to the

complexity of these parameters, it is customary to
compare speeds of different computer systems by
the time it takes to execute some selected
benchmark program. For computer-aided design
applications, the benchmark program should
include both graphic and arithmetic operations.

fFor talking purposes, consider a main-
-frame as a "big" computer operated by
someone else, a minicomputer as a refrig-
erator-sized computer operated by you,
and a personal computer as a desktop com-
puter operated by your kid.

ttActually, K = 210 = 1,024 bits.

tttmegabyte = 229 = 1,048,576 bits.

Terminals and Input Devices

The most conspicuous device used for
computer-aided design is not the computer, but
the terminal. Currently, most terminal displays
are of the cathode-ray tube (CRT) type, aithough
that may change. A CRT works like a television
sereen - an electron beam is focused and aimed by
magnetic {ields to preduce a spot on a phosphorous
screen. In a "refresh" tube terminal, the spot
almost immediately disappears. Thus, the whole
screen must be "repainted” at least 30 times a
second to maintain the display. If you wish the
display to change, you merely change the Dbeam
aiming between repaints. A refresh tube can be
of two types - raster or vector. Raster tubes act
just like television screens - the entire screen is
scanned in a regular pattern, with the electron
beam on or off to produce a dot (raster) pattern.
A vector tube is not scanned - the electron beam
is aimed to paint only those lines desired. Figure
1 diagrams a refresh tube,

Figure 1. Refresh Tube (RT

A "storage" tube CRT does not continuously
repaint itself . Instead, it has two electron
producers - an aimable beam like a refresh tube,
and a "flood" cathode which sends a broad,
continuous stream of electrons. A fine wire
screen, called the backplate (see Figure 2), is
placed just inside the screen, and is negatively
charged. When the aimed electron beam strikes
the backplate an emission of electrons is produced,
leaving a positively charged area. It is only at
the positively charged areas that the (flood
electrons can pass through the backplate to strike
the phosphor screen and cause a spot to appear.

FLOOD CATHODE BACKFLATE

WRITING CATHODE PHOSPHOR

COATING

Figure 2. Storage Tube CRT

COATTNG

Once an area is "written on" by the beam, the
resulting spot remains visible on the screen.
Thus, constant repainting of the screen is
avoided. Because of this, there is no limitation to
the number of lines that can be drawn eon a
storage-tube CRT, whereas a wvector refresh tube
will begin to flicker if the number of lines toc be
continuously redrawn gets too large. To erase a
storage-tube CRT, a brief positive charge is
applied to the backplate, producing a guick flash.

Some terminais combine features of refresh
and storage tube CRT's. Most graphics are stored
on the tube lke a storage tube, but a "refresh
buffer" is available for text and limited graphics
by use of a beam too weak to cause backplate
electron emission. For example, in positioning a
wheel, the complete aircraft could be drawn on the
storage tube, but the wheel could be drawn in
refresh, allowing it to be moved arcund.

Virtually all terminals used for design have a
typewriter-like Kkeyboard, and most have some
additional types of input devices. Some have
function buttons (or keys) used to augment the
keyboard. Some terminals also have an
adding~machine {l0-key) keyboard for entering
numbers rapidly.

Most graphics terminals have some means of
specifying a location on the screen. Perhaps the
most common is the graphics crosshair. This is a
faint crossed line on the screen which can be
moved arcund. Its movement can be controlled by
thumb-wheels, a joystick, buttons, dials, a tracker
hall, or a palm-held device called 2 "mouse” which
is slid around the table by the user.

Another way to move a graphics crosshair on
a raster CRT is wvia a light pen. This device
looks like a thick pencil and is actually touched to
the screen where it senses the location of the
electron beam. From this, the indicated location
on the screen can be determined, and the graphics
crosshair moved accordingly. For a vector refresh
tube, a temporary raster pattern can be requested
whenever the light pen is to be used. In addition
to controlling a crosshair, the light pen can be
used to identify elements on the screen, including
line segments and available command words. In
one very popular CAD system, most of the work
can be done with just the light pen and an
occasional press of a function button.

Another wvery potent input device is the
magnetic {(or digitizer) tablet. This is a flat
surface of virtually any size which uses embedded
wires to detect the presence of a pen-like device
or hand-held puck. This can aiso be mechanized
acoustically or mechanically., The tablet can be
used to contrel a crosshair, select commands
printed on the tablet, or input a drawing taped to
its surface. This approach is followed by a major
competitor to the system mentioned above, with
similar beneficial results.

Output Devices

There are a variety of graphics output
devices. Simplest for the user are the screen
copy devices. These make a print of the actual
images on the screen, usually by electrostatic or
photographic means. These have the advantage of
speed, but are not wvery accurate. A common
problem of these devices is misalignment of scale in
the wvertical and horizontal axis, producing a
slightly distorted image. This is avoided in more
sophisticated electrostatic plotters, which produce
a drawing by rasterization of geometric data rather
than copying the screen.

For greater accuracy, pen plotters are often
used. In these devices an ink pen is mechanically
moved across a piece of paper {(or vice-versa).
Some pen plotters allow multiple ink colors. Pen
plotters range from notebook paper size to 20 or
more feet long. Their main disadvantage is their
comparatively slow speed.

There are other devices which output directly
to microfilm, videotape, or motion picture film.
The latter two can be used for animation, as
described in a later section.

Communications

Computer communications are very important
for development of common data bases. The best
form of communication is wia direct, or "hard"
wiring. Interface devices allow computers to talk
over direct wires at very high rates of data
transmission, cailed the "baud" rate (bits per
second). A slower but widely used rtype of
communication is over the phone lines. This
requires conversion from "parallei" {(i.e., many
bits at a time) computer outputs to "serial” (i.e.,
one bit at a time) signals. A "modem” (modulator-
demodulator) is used to convert the computer's
digital signals to analog signals for transfer over
phone lines. For fixed installations using the
phone lines on a regular basis, the modem is
directly wired to the telephone network. For
portability and low cost, an "acoustic coupler" can
be used. This is a device which transmits and
receives high frequency sound through a regular
telephone headset placed in a cradle. The
acousticaily coupled modem is quite slow and
suffers from higher transmission errors.

Even slower forms of communication between
computers are acceptable for certain applications.
Magnetic tape can be used for transfer and storage
of large amounts of data. Computer disks,
especiaily the inexpensive and portable "floppy"
disks, can also be used for data transfer. Others
include the obsolete paper tape and punched
cards, and cassette tapes for some personal
computers.

Languages
As mentioned earlier, computers understand
only "1" and "0". Therefore, actual instructions

that can be understood by the computer must be
coded as a series of "1"'s and "0™'s. For exampie,
"1000 1010 1110 1111" may mean "add what's in
location "1110" to what's in location "1111" and
store the result back in location "1111". This
type of instruction, called "machine code" is all
that the computer can directly understand.
Obviously, this is extremely difficult to use for
writing programs. To make things a little easier.
"assembly code" uses easy-to-remember words
instead of binary numbers. Qur example in
assembly code may read "ADD D,E". This still
requires the programmer to Keep track of exactly
where all the numbers used in the program are
stored. However, in the hands of an experienced
programmer assembly code is unmatched in speed
and thus is frequently used for applications such
as trigonometric functicns in which speed is
critical.

For most of us. higher-order languages are
required. There are computer languages such as
FORTRAN, BASIC, and PASCAL in which
easy-to-remember imstructions are used. For
example, our previcus example becomes something
like "a4.,= B + A" However, this means nothing to
the computer. A program in a higher order
language is automatically converted intoe machine
code by yet another computier program (itself
stored as machine code). There are two options.
In the case of BASIC and some other languages,
the program can be converted during execution.
This is called an "interpreter.” The other option
is to convert to machine code prior to execution,
using a program called a "compiler." In this case,
a machine code version of the pregram is created
and stored. The machine code version is called
the "object deck” while the original higher-order
language program listing 1s called the "source
deck” (or Tobject code" and "source code").
Interpretive languages have the advantage of being
executable without an intermediate step to compile
the program but compiled programs are faster in
execution.

UVSER INTERFACE

The most critical component of a
camputer-aided design system is the manner in
which the wuser and the computer talk tc each
ather. This more than anything else will
determine the productivity of the man-machine
team.

The nser interface has conflicting
reguirements. For ease of use, the computer
should give detailed prompts and instructions to
the user. This is especially important for new
users. On the other hand, detailed prompts and
nstructions significantly slow down the
experienced user. At least one program has been
written which asks the user his experience level,
then provides an appropriate level of assistance.
Obviously, this requires substantial programming
complexity .

Figure 3 shows the unfortunate reaction of
many new users to a complicated CAD system.

3 :‘:‘—‘L‘ - J":'-C'(:\J—'\
o
£ DESIGN AN 4 55
G ARCRAFTZT=e =7
1 CANT EVEN FND;
= o BOTTC

Figure 3. Mew User Meets Computer

The computer and the user talk to each other
through the terminal. The computer addresses the
user mainly through words written on the screen,
although graphics and sounds are also used. The
user talks to the computer through the devices
mentioned before - keyboard. graphics cursor,
digitizer, and others. These input devices are
used in one of two ways.

Usuaily, input devices are called by a
program statement that instructs the computer to
wait for a user input. For example, a statement
for kevboard inputs will wait for a line of tvped
letters followed by the user pressing the return
key on the keyboard. Nothing happens until
return is pressed. When it is pressed, the
typed-in information, expressed as ASCI[(or
other} characters, is passed to the program as the
contents of a variable, and can be acted upcn
within the program.

Another type of user input is the
"interrupt.” Here the program 15 suddenly
jumped, by the pressing of a key, from its
current task to an alternate task. For example, a
long iteration which is not converging to a solution
could be aborted by pressing a "break" key,
which jumps the program to another task such as
waiting for another command.

The simplest type of user interface is the
"menu' . Here the computer lists the awvailable
options, usually with number identufiers., and
awaits the user's selection. The user need only
type in the name or number of the desired option.
For example, a menu may read "(0)-STOP: (1)
DESIGN; (2) ANALYZE". The user merely enters
0, 1, or 2. This approach is easy to program and
easy to use. Note that the simplest type of menu
is the YES/NO prompt. The problem with this
approach is the amount of time it takes to specify
a particular task if the program has numerous
capabilities. Imagine how many menues would have
to be printed and selected fo tell the computer to
scale the Ulp airfoil of a wertical tall by two
percent in thickness!

An alternate approach is the command
language. Here the user must learn to type in a
number of distinct commands, such as DRAW,
ERASE, SCALE, etc... Options can be entered
along with the command, allowing infinite flexibility
wu;h one input string. However, the user must
"speak" the new language, requiring some learning
time. Alse, the programming required to decode
an input can be substantial, especially if some
degree of "friendliness” is required. For example,
humans tend to leave out the decimal point when
typing in a round number such as (2). A siumple
command interpreter will fail to understand (2} as
the (2.0) it was expecting!

A hybrid approach offers many advantages.
Here the regularly used options are selected by a
command language, while complicated or irregularly
used options go into a menu mode. The user may
enter the command "DRAG", and be prompted via
menues for all inputs required tc calculate drag.

Any of these approaches can be used with
input devices other than the keyboard. Function
keys may substitute for command words or menu
responses. The cross-hair or light pen can be
used to select from a menu. A detailed Hst of
commands can be physically printed on a digitizer
tablet, and commands or menu responses can be
selected with the digitizing pen or puck.

The system designer must decide whether to
benefit new or occasional users with a
menu-oriented system, or benefit experienced
users with a faster, command-oriented system, or
try for some happy medium.

GRAPHIC PRIMITIVES

Every interactive graphics computer has its
own unique graphics program statements-standard-
ization is, alas, in the future. These statements
are written in whatever programming language is
being used - generally FORTRAN for scientific
work. Whatever the system and language. there
are common capabilities which must be present in
some form or another. These graphics "primitives"
are described below.

Most computer graphics are composed of
straight lines. To get a curve, a number of very
short, straight lmes must be drawn. The most
basic graphic primitive would be something like
LINE (X.Y). This would draw a line from the
current {i.e.. last) position to a new position
(X.Y) Some similar program statements can be
found in all computer graphics programs. To move
to a4 new position without leaving a line would
reqguire some statement such as MOVE (X,Y).
This is used 1o get to the start point of the next
line if it doesn’t begin where the last one ended.
With these two primitive graphics statements in 3
higher-order program, virtually anything could be
drawn.

Another obwvious requirement is an ERASE
statement. On storage tube terminals, this must
erase the entire picture. With a refresh terminal.
it should be possible to specify just certain lines
for erase, either by (X.Y) location or some
designating device such as a light pen.

Another primitive capability required is the
ability to write text and symbols, perhaps by
statements entitled TEXT and SYMBOL. These
would write text or draw symbols at the current
location of a cursor (the cursor is an imaginary
entity which exists at the last location specified).

If the picture being drawn is larger than the
screen., the picture must be truncated at the
screen borders to prevent erroneous lines f(rom
appedaring. This requires some clipping”
statement, which could also be used to create a
viewing window on the screen.

Some more sophisticated computer systems
have color and shading capabilities, requiring
separate program statements. Other statements
include sound generators such as bell or musical
tone statements. used to scold, reward., or wake
up the user Statements for outputting graphics
on other devices such as pen plotters are also
tvpical.

User inputs are programmed through input
statements. A statement such as KEYBOARD will
await a line of characters followed by a "return."
Various "device" statements will await inputs from
the specified device, such as a digitizer which
reads in X and Y wvalues. One typical statement
simultaneously reads In one character from the
keybourd plus the screen location of the crosshair
as the key is struck.

There are other specialized program state-
ments for various applications not given here, hut
a complete listing would be impossible. As men-
tioned before. those described above are not sctual
statements for any one machine. but are typical of
the functiens which similar program statements will
provide i an actual computer system. Such state-
ments are written into the program to write menues
on the screen, read the user's response. input
geometry, piot analysis results, draw figures, or
any other features required of a computer graphics
program. Table Il lists a typical FORTRAN pro-
gram segment using terminal input, erase, and line
drawing statements from the TEKTRONIX PLOT-10
graphics package.

TABLE II. TYPICAL FORTRAN LISTING

GuSACITINE PMILIM (REyrTye)

FINSSAT CHard9 [NSZ9T 20T

SISEAT TEACIMaINSIAT.FTT

R U A LTSI VAT AN LT P LS P VAT TR P LS NV

aaaFJHNOTION:

icceT CALE EACTOR ANC JATSIN T SROYIZFE 7938 CiPgali [Ty

saa i ¥ILTSZ
BAGJMENTS

vava i

L
v

5
3
4
Al

IORMON sCMOCIMS
ITYPE SIE COMINT

o TR 417 &4

ZOMMON STERCINS
FagT SISPLAT UMITS CONVERSION FacToR
slaomM il IN0IATIE

doal JARIAPLFS:

2336 F1APmICS TURSOA JESICSSA JRIGIN LN SCREEN [NCHES
TURG GRAPHICS CURSOR ORCINATE JALGIN IN SCREEN INCHES

X2472 #USITION 3JF JPPEX RIGHT CIANER JIF WINOOW

JRAw LU@LR LEFT CSORNMER JF WINDOw

aapraapraalionf oo

SALL 2L IT (MEedATsX)

SALL PLIT (nRedlded)
TALL PLIT (MXan¥y3)
SALL _PLNT (8]3aHYal]

<PPER RIGHT CDRMER CF «INOIN

IEINT
w
"
=+

CALL CJASOT {XI»T24KET)
[F (XEY .£Q@. YEYQ) AETURN 1
IF (=Ey LiZe <FY4) G5 T3 %510

JR4W gPPER RIGHT JJRMER OF wINDIOW

(T3

CALL PLOT (A247241)
ZALL PLOT (X2.5MALL.2)

TALL PLAT (SAALLTZ2.3)

ACT

HapTn
=
-
=
=~
oy
=3

XFACT = [,]/ABSIX2=nE)
AFACT = 105/ AR5(YI=u¥]

EF LIFACT wbTe JFACT) IFACTIIFACT
IATLS = IFALT/FACT

- suEeEACT)

TCRAG = I[TCRG=(TORG+AY*FACT)ImdaATI]
FACT = IFaCT
g5 TgQ zfsap

[
T NJMEALC [NPUT

1610 Z3LL wATUBE [Q+04* ("% [NAJT [J3M FACTIT*")*}
SALL COMINT
JE LLTYREiR) LLT, 2) G0 T2 181D

SALL FELLIN (LeRATIZ)
[F ERATIO.LT.0. «CR. AATIA.G6T.L.) GO TO 3plD
LE (SATIT LFa. J.3 63 IO 351Q0

KORG = Ta0O0®ila=fATIJ)#00RS#44TID
TORG = S.iSe{l.=dAT[S)erdA5eaaT(2
SACT = FaCTedaTlD

20 Ql%3aM = 1

=1 E4s SCAETN

L IR

ZaL. EWASE

ATT Ry

SESET TO auTd-8lanE

(PRI

GRAPHICS MATHEMATICS

Screen Coordinates

The LINE and MOVE statements described
above move the cursor in a "screen coordinate
svstem.” [Usually, the bottom left of the screen is
{0.3). with positive X to the right and positive Y
in an upward direction. Typically, X and Y may
range from Zzero to one thousand or so. Usually
the screen is not square, but wider than it is
high. so Y has a smaller range than X.

Toe draw a line {rom, say, (-50,-80) to
(+1530, +2000), it is necessary to establish a
screen scale other than the original screen
coordinate system. This is done by multiplying all
points (X and Y) by scme screen scale factor, and
adding to each point some X and Y wvalue. In the
example given, the actual X varies over a range of
1580. If the screen coordinate system varies X
from O to 1,000, the line must be scaled to no
more than 611 (1000:1580) of the full size. Y
varies over a range of 2080. If the screen
coordinate system varies Y from 0 to 800 (as an
example}, then the line must be scaled to no more
than 385 (800+2080) of the full size. Of the two
scale factors calculated, the Y wvalue is more
critical (smaller}) and so must be used to scale
both X and Y, thus maintaining the desired line
shape. but at a size small enough to fit the
SCreen. After scaling, the line endpoints are
{-19.23. -30.77) and (589.46, 769.23). The first
point is still off the screen past the lower left
carner (0.0). To put the line back on the screen,
we must add 12,23 to the X walue of each pont,
and 30.77 to the Y wvalue. Now the line goes from
(0,0) to (608.69, 800). This exactly fills the
screen from top to bottom. To see the ends of the
hine., a slightly smaller scale factor (say .35)

should be wused. This process is shown in
figure 4.
(1530, 2000)
¢ 2
s00 -}
4 DESIRED
LINE
0 - X
o 1000
{-50, -80)
(609, 80D)
(589, 769)
i MOVE
{-19, -31) i

Figure 4. Screen Coordinate Transtormations

=

If every LINE and MOVE statement for a
drawing has the same scale factor and X and Y
offsets applied, the resulting picture on the screen
will be an exact, scaled image of the original
geometry. This process is analogous to making a
fortieth scale layout of an aireraft rather than
using fifty-foot long drafting tables. As long as
the scale factor is known, the actual size drawn is
a matter of convenience.

If a drawing has been created on the screen
in- the manner described above, it is simple to
Zoom in on one partion of the drawing. This is
done by using a larger scale factor than the one
calcutated, and use X and Y offset values to place
the desired portion of the drawing on the screen.
Note that a clipping command such as described
previcusly must now be used.

3-D Mathematics

This procedure suffices for twe dimensional
drawings, but what about drawing a three
dimensional body? If some object, such as a cube,
is defined by Llines connecting points In three
dimensions (i.e., (0, 0, 5) to (0,5,5)) the two
dimensional projections orthogonal to the cube's
three-dimensicnal aXis system can be easily drawn.
This is done just by using two of the three
coordinate values. For a side wiew, connect X and
Z points (etc). This method isn't capable of
orthographic projections or perspectives, These
are accomplished with what are referred to as
"homogeneous coordinate transformations.”

Homogeneous coordinate transformations use

four-byffour matrix multiplications to perform
three-dimensional scale changes. translations,
orthographic rotations, and perspectives, A

dummy constant. "h", is used to increase the

three-dimensional (X.Y.2) points to four

dimensions. Each (X.Y,Z) is multiplied by h to

produce a point (hX,hY.hZ,h). The new point

(X',Y",2') created by the desired operation is

fln;-un_d by dividing the points (hX',hY' .hZ'.h") by
, l.e.:

hx' hY'

x\._Hr;Yt__h_r;z, hi*

=BT

{hX' ,hY',hZ" ,h’] = [hX,hY,hI,h] x [Rnu]

R is the operating matrix. defined below, to
produce the ddesired scale change, translation,
orthographic rotation, or perspective.

The selection of h is entirely arbitrary, so it
15 usually selected to be one. In this case
X = hX.Y = hY, and Z = hZ. Note however, that
if h is selected to be zerc, X, Y, and Z are
infinite. Below we assume h is one. giving the R
matrices for the four operations.

Note that scale and rotation operations can be
performed with just the upper left three-bv-three
submatrices, since the last row and column are
from the identity matrix.

To obtain the two-dimensional rotated orthe-
graphic view of a three-dimensional body. multipiy
the (X,Y.Z) of every point successively by roll,
pitch. and vaw rotation matrices. Note that the
order in which these are done affects the final

- image, 5o the order must remain consistent. This

afoao f results in new three-dimensional points such that a

0bo0oO a is X scale factor side view of the new poinis is identical to the view

Sely change. (&= lg0c b is ¥ scale factor obtained if the original object were being observed

0001 ¢ is I scale factor in side view and then rotated through the angles

A 1 = no change used. Similarly. top and rear view of the ‘ro_t.ated

points show the view if the object were originally

being viewed in top or rear view. Thus, 3 screen

1000 e = X offset display using two of the three coprdi.nate vlalues

Translation R=f0100 £ = Y offset for each point wil preduce the desired two-dimen-
Al l LLLLils 0 % 1 2 g = I offset sional rotated orthographic view.

efg .

To produce a perspective. first produce the
three-dimensional rotated points. then move the
Rotation about ¥ (roll) viewpoint along the axis appropriate to the desired
view. For example, if the original position {(no
rotation} is selected to be the side view. perform
the desired rotation, then use the Y-axis
perspective Re-matrix. and finally use the resultant
X and 7 wvalues to create the two-dimensional
screen image.

1 0 0 0
R = 0 gosy siny O
0 -siny cosy 0
0 a 0 1

. Figure 5 shows a display created by this
Rotation about Y (pitch) technique from a three-dimensional data base.

Note the wvanishing point effect created by the
homogeneous transformations.

[cosu 0 -sina

i)

Ra| 0 L 00
sina 0 cosa O
[0 g 0 1

Rotation about I (vaw)

cosd sing 0
R = -sind coss 0

o0 090

=5
7000 3N

Perspective along I axis

d = distance
1 00 0
010 ¢
R=1lo 0 0-14
000 1
Perspective along Y axis
e Figure 5. Perspective Dispiay of Runway
gR=|0 00 -1/d
0010
[o 0 0 1
L
Perspective along X axdis Homogeneous coordinate transformations and
their derivations are described in 2 number of
computer graphics textbooks. An excellent and
fﬂ 0 0 -1/d concise derivation can be found in the course
) o100 notes for the University of Michigan's short course
20 10 on Computer-Aided Design, by Dr. R. L. Phillips.
000 1 Detailed treatments of computer graphics are

available in "Interactive Computer Graphics”, by
W. Giloi (Prentice-Hall, New Jersey, 1578), and
"Fundamentals of I[nteractive Computer Graphics”,
by J. Foley and A. Van Dam (Addison-Wesley
Publishing Co., Mass., 1982). Another excellent
reference is "Computational Geometry for Design
and Manufacture,” by Faux and Pratt (J. Wiley &
Sons, N.Y.. 1979},

GEOMETRIC REPRESENTATION
2-D vs 3-D

The preceding section assumes that vou, in
fact, know the endpoints of the lines that wvou
wish to draw on the screen. If those lines are to
produce a drawing of an awcraft, some form of
geomelric representation must be used. This can
be two-dimensional (2-D)} or three-dimensional
(3=D).

A 2-D pgeometric representation emulates a
piece of paper. Line endpoints* are stored as
{X,Y) points on a drawing area. Side, top and
rear views are created by separately specifying
lines in each view. These lines have no inherent
connectivity. An ignorant user could draw a
square in side view, a circle in top view, and a
triangle in rear view, and the computer wouldn't
protest.

An improvement to this is the so-called
"2-1/2-D" swstem. Here algorithms calculate from
the first two views where the third view of a point
must lie. However, the resuiting point is still
stored as an (X,Y} point on a drawing area.
There 15 no 3-D surface, so cross-section cutls
must be developed individually., as on a drafting
beard. ‘The 2-D side and top wview lines can also
be used in a guasi-automatic fashion to assist in
the construction of cross-sections if the appropri-
ate programs are available.

In contrast, a 3-D svstem has no storage of
separate wiews at all. (X,Y,Z) points, or
equations te produce them, are stored. Desired
2-D wiews are produced automatically using the
mathematics from the previous section. Because
the 3-D surfaces are fully defined, cross-section
cuts can be produced automatically.

The simplest type of 3-D geometry
representation is the 2-D svstem with the addition
of a depth or thickness wvalue {or values). This is
tvpical for production design applications, but not
very useful for conceptual design.

A more useful 3-D representation is obtained
by a mesh of (X,Y.Z) points lying on the desired
surface. These points must have some ordering
scheme to be useful. One simple scheme is to use
an equal number of points in a series of parallel
cross sections (Figure 6}, This geometric
representation is not wvery accurate, as the
computer draws straight lines between the stored
pomts. but is very rapid to develop and display.

Z

Y

Figure 6. Surface Point Storage

#Or equations to produce line endpoints

Longitudinal Control Lines

Much improved surface definition van be
obtained by storing a number of I-D longitudinal
contrel lines (Figure 7) These lines gzive points
at any section location which are then used 1o
automatically develop cross secfions in a8 manner
analogous to manual lofting. The longitudinal lines
can be stored with a variety of techniques .-

3iDE

Figure 7. Longitudinal Control Lines

Simplest for the programmer and computer is
the storage of lines in equational form For
example, the cubic equations below will fully define
a line in three dimensions, and are rapid and easy
for the computer to caiculate given an x value.
However, the coefficients A.B,C,D.E.F.G, and H
have no direct meaning to the designer. and thus
cannot be used as the input form.

3.n.2

Y o= AxT+Bx"+Cx+D

T = EXO+FxC+Gx+H

A designer controls shape on the drafting
board by specification of points and slopes, using
the straight edge, protractor. french curve, and
flexible spline. In a similar fashion, the cubic
equation above can be controlled over a range by
specifying a total of four peints and slopes (first
derivatives). For example, the coefficients could
be generated from four pomts input by the
designer with a light pen or tablet. Alternately.
two points {the endpoints) and the slopes at those
endpoints could be mput.

Note that this last approach prevents the
designer from specifying any points within the
curve-only at the endpoints. To provide control
within the curve and still allow specifying slopes
at both endpoints a curve of higher degree than
the cubic {3rd degree) must be used. A fourth
degree {quartic) curve allows specification of five
conditions, such as endpoints (2}, slopes at
endpoints (2), and one point between the
endpoints. A fifth degree (quartic) curve allows
six conditions, such as endpouts (2), slopes at
endpoints (2), an intermediate point, and the slope
at that point. Alternately, one could use a quintic
equation to control location. slope, and curvature
(second derivarive) at two endpeints.

Higher degree curves are, of course,
possible, but run into problems of computational
time and waviness. As a general rule-of-thumb,
the lowest-degree curve that meets the specific
applications requirements should be used.

There are other line definition techniques
which can be used. such as "tension splines” or
"h-splines. ™ Descriptions of these can be found In
the references listed on page 7

Slope Estimating Technigues

In establishing longitudinal contrel lines, the
designer may not always knew the desired slope at
a particular point. Instead, he may want to select
the slope that gives a smooth curve connecting a
number of points. On the drafting board, this is
donie wisually. Hiroshi Akima of the U.5.
Department of Commerce has developed a simple
equation that mathematically replicates the
"eyeball’ slope estimation of an experienced

draftsman. This equation uses [wo points on
either side of the point Tor which a slope is fto be
estimated. The equation gives 'nice” slopes

producing smooth curves when combined with a
curve equation such as the polynemials described
earlier. One especially desired feature of Akima's
equation, given below, is that it "recognizes” the
situation in which three colinear points transit to a
point off the line, and assign$ a slope parallel 1o
the line. This is shown in Figure 8.

Py P, P,
e R R winb et i
P, A
a P.‘l,' j .
TS, e = ESTDWATED SLOPE 3%
R
wrp _CalSEl St
Il e TGty v C T
where
Y -¥Y v, -V
= ol L A 1l°'a
gy c, = R G
2 Lox,wy 1 o 2

Figure 8. Akima Slope Estimator

Robert Maier of Rockwell has developed a
modified form of Akima's equation which provides a
closer match to the slopes of continuous functions,
although requiring more computational steps.

1= r ERIA
G0 wagae LSl
o= &Y ra TR

Xy y)

Either equatien cannot be used for assigning
slopes to the first two or last two points of a
series of points. For these cases, a cubic can be
fit using the first three (or last three) points with
the slope at the third point as estimated using one
of the equations azbowve.

Geometry Storage

Whatever the technigues used o mput points.
slopes, or other conditions, there are two choices
for storage of geometry. Either the calculations to
produce equation coefficients can be performed as
the user makes inputs, and the resulting
coefficients can be stored, or the user's inputs
{points, slopes, etc) can be stored, and coefficient
calculations made only as the drawing is being
created.

The first approach is quicker for drawing the
finished geometry, but slower during design. The
reverse is true of the second approach. The
second approach is probably more compact in terms
of data storage. For example, a cubic equation in
three dimensions requires storage of eight
coefficients (A through H) plus two X-values to
indicate boundaries for a total of ten. If the same
curve is stored as points and slopes, two (X.Y.Z)
points (start and end) plus four slope vaiues
{dy/dx and dz/dx at both ends) must be stored,
totaling ten numerical values. Note, however, that
if a second cubic must be stored which smoothly
follows a previous cubic, omly five addition values
must be stored in the second approach whereas
nine new values must be stored for the first
approach.

Parametric Representation

The equations to date have all been iIn
"functional” form, i.e., one axis value such as Y
1s expressed in terms of another, orthegonal axis
value such as X. This approach is intuitively
simple and suffices for many applications.
However, a functional representation cannot deal
with a situation in which there is more than one Y
value at a given X location. To deal with such a
case, a "parametric" representation must be used.

A -parametric eguation relates axis guantities
such as X,Y, and Z to a quantity called the
"parametric variable”, typically t. This quantity t
represents distance along the curve measured from
some arbitrary reference point (t = o). The units
of t are arbitrary, thus typically the equations are
written such that t varies from zero to one along
the desired curve. (Figure $)

Figure 9. Parametric Curve

One nice feature of parametric representation
is that it automatically bounds the curve, whereas
in functional form one must store the desired first
and last points to bound the curve.

The cubic equations used before to define a Note that a Bezier curve 15 of (_n-l}_order,
line in thres dimensions are shown below in i.e., if five peints are wused, this yields a
parametric form. . fourth-order curve. Also, the Bezier curve is
tangent to its endpoints along the line from the

endpeint to the next adjacent point,

X = At3+Bt2+Ct+D Cross Sertion Generation

5 a With longitudinal control lines available,
SFtosGe+H Note: o o generation of cross sections can be done in a
number of ways. Probably the simplest technigue

3

AR

Y = Et

7 = TtoeJtleKes] is to use three 2-D longitudinal control lines to
give cross section values for upper centerline,
lower centerline, and maximum half-breadth and
then develop elliptical cross sections using the

Note that since X, Y and Z are defined by equations below. This is illustrated in Figure 11.

separate equations, they can have multiple values.

In fact, a parametric curve can loop across itself. Y Fl -l

Also. the range of t is arbitrary. Coefficients A ¥ —

through L are found as before, by specifying r = czhf I-xtiaT

conditions such as points and slopes at various a=Xn

locations. b ».rhere{b = Yu-y1)12
=y, ob

An alternate to eguational representation of Y T S s Lt

lines is the "Bezier-curve."” P. Bezier of Renaulit ¢
has dewveloped a parametric curve based solely on / .
storage of peints. These points act like magnets, ! X
pulling the curve towards themselves. The first ;

and last points stored are the endpoints of the i
curve. This representation 1s wvery good for
interactive manipulation by designers who can

visually see the mmpact of moving points around

{Figure 10). The equations are as follows, and Figure 11. Elliptical Cross Section From Three
rely on weighting wvalues which are applied to the Values

stored points.

i While this may be suitable for a “gquicky"
Low xi“?i design program, it is obviously too limited for
1=0 serious work. A substantial mmprovement is
obtained by using three 3-D longitudinal lines
el 5 controlling the endpoints of two ¢onic curves in
Y= Z *iJi each cross section, assuming that the cross section
1*o slopes are "square" (see Figure 12) and using a
constant p value¥*. Conic equations are shown
. 3 below. Note that if p is chosen as (.4142), a
= 1 =i circle will result when the endpeoints are
: equidistant from the tangent intersection.
where
i Y
X.,Y,,I.) are coordinates of point i 14,81
i B & e
n is mumber of points used g
b= lepiw
n! al n-i e R B
it T v A &kl :.
K = (E-30/&)7/DIB-£)
S = BK
o= K43
P o= K/ 4-5/4)-#/4
Y [m
10.01 x

Figure 12. Conic Equation

*p value is defined as shown below:
TANGET ADPOINT

IVTERSECTION |,
|

 BISECTUR
il

./' HIDPOINT f; s

ENDPOINT
Figure 10. Bezier Curve

10

Note that this assumes the curve starts from
the point (0,0}, which is unlikely. To translate
the curve to a starting point (X, Y,), subtract
Xg from A and Yq from B, calculate P, R, and S,
then use

Y = POX-Xy) .,réc(-):o]-? +S(-Xy v Yy

I.e.. we have substituted ‘X+X;) and (Y+Y,) for
{X) and (Y) in the defining equation.

More flexibility can be obtained by allowing p
to vary from nose to tail. This requires a 2-D
longituding control line for each conic.
Alternately, the conic shape could be controled
not by g value, but by an actual peint (D.E) on
the surface., allowing the first two calculations in
Figure 10 to be skipped. A 3-D longitudinal
control line is required for each conic to specify
(D.E).

A generalized, parametric copic is shown in
Figure 13. Here slopes are arbitrary and t, the
parametric variable, wvaries from (0} to (1).
Simple geometry is used to determine the location
of T, the tangent intersection, from endpoints P
and @ and desired slopes. This curve requires
3-D longitudinal control lines for P, @, and T,
and a 2-D longitudinal centrol line for p.

i)’ Prekt(L-t)Txrt 2x
T+ TR-2} (L) (1-T)

Figure 13. Parametric Conic Using p

As before, an alternate approach uses a point
on the curve instead of p. This is shown In
Figure 14, Here 3-D longitudinal control lines are
required for A, B, S, and T. for each conic in
the cross section.

X is a vector. To find X_ and X_for a
given t, use either the X terms & the Y ferms of
the vectors A, B, and T to find @, then again use
either the X terms or the Y terms of the vectors
A, B, T, and Q@ in the X expression. This was
spelled out in the last example.

11

Wi B A

} ¥ector Subtraciion

1= (51-43)(31°81)-.51°3L01a306L))
] . : sealors
2 = |51-B1}(Al-Al)-(S1-AL){AL-BL} aTocuced by

Ui ke
]

i
1

€ o® LAL-ALY (BL-BL)-(Ad-BL) (AL-21% | Jot products

i m EmA=D
L scalar

oo

Y= :l-’\'i1“‘\"Q“BIE:'{-L\-L!rlAu}Q-a]t.A
(l-vjrm-2(L-v}t+l

£

Figure 14. Parametric Three-Point Conic

As in the case of longitudinal lines, cubics or
higher degree equations can be used for cross
section definition from point and slope wvalues
produced by longitudinal control lines. Another
cross section representation with desirable features
is the superellipse. This equation has the
advantage of producing anything from a circle or
ellipse to a nearly-perfect square, from only one
equation, as shown in Figure 15.

1
ﬁ Sl
___//rl T
'!

i n = oo
3 i !I]
"
I_\ o
--d.__--—raalf’/llll’ ' =y

) @ -

Figure 13. Super Ellipse

Surface Patches

A more sophisticated technique than the

longitudinal control line is the surface patch. A
surface patch [s a set of equations defining a
surface mathematically within s bounded region,
hence the name "patch.” Surface patches uare
usuallyv parametric. and for convenience the patch
is usually bounded between zeroc and one in the
two parametric directions (see Figure 16).
Surface patches allow greater flexibility of design
than longitudinai control line methods, offer better
control of smeoothness, and are simpler for calcula-
tion of geometric derivatives such as slope and
curvature n arbitrary directions.

(R

Figure 16. Parametric Surface Patch

A surface patch can be developed with
equations of any degree. "BiCubic" patches are
common. Rockwell uses a special "BiQuartic” patch
which features a Bezier-like representation.
"BiQuintics" and higher can be used. Again, the
higher-degree the equation, the better the control
over slopes and curvature, but the longer the
computation time and the more waviness
encountered.

A special patch that is well known is the
Coons-patch. This parametric patch provides
positional and slope continuity across the boundary
to adjacent patches, and also has terms explicitly
dealing with twisting of the surface along the
boundary curves. The Coons-patch is represented
solely by four boundary curves preventing explicit
control of the interior of the patch. For a
detailed treatment of the Coons Patch, see
"Surfaces for Computer-Aided Design of Space
Forms", MIT Project MAC TR-41. June 1967, by
Steven A. Coons.

Patches typically have the same problem
encountered with longitudinal line equations: the
defining coefficients aren’'t very meaningful to the
designer. This can be solved in much the same
manner. by allowing the user to specify certain
conditions. such as points, slopes, or curvatures.
Similariy, the Akima egquation can be used fto
establish slopes from a series of points. Paich
equations of wvarious forms can be found in the
references given on page 7T

Solid Modelling

"Solid Modelling® is a term frequently
encountered today in computer-aided design, and
can have several meanings. The "classical" (i.e.,
four years old!) definition of solid modelling is
based on the use of built-up "primitives.” These
primitives are simple solid bodies such as spheres,
cylinders, and cubes which are assembled together
to make an object. The primitives can be posilive
or negative (i.e., a hole), and are summed using
Boolean algebra.

12

This technique has important advantages in
terms of computation speed for tasks such as
hidden line removal or radar corss seclon
estimation because the properties- of the surface.
such as surface normal or curvature, are known in
advance. On the other hand. it is lmited to fairly
simple shapes, and precludes exact representation
of complex cbjects such as a highly blended wing.

Recently a broader definition of = “solid
modelling” has been applied. This defines a solid
model as any geometric representation which has a
single, unambiguous real-world counterpart. This
encompasses the constructive solid geomelry
(CSG)" described abowe, and ailso includes
boundary representations, such as the surface
patches described earlier., and other forms such as
"sweep" representations in which a 2-D outline is
extruded through space in some fashion to form a
solid. Thus, solid medelling actually relates to
almost any representations now in use, except for
the simplest wire frame technique such as shown
before in figure 6. Note that the computation
speed advantages atiributed to constructive solid
geometry do not apply to other "solid models” such
as the boundary representation.

Local Axis Svstems

The previous discussion has implicitly
assumed a single "global" XYZ coordinate system.
This can be guite cumbersome, for it requires
changing every coordinate point of an object (such
as a wing) if some translation or rotation is
desired. Also, the large numbers required in a
global-only svstem to define an object far away
from the origin cause 2 loss in the number of
available significant digits for accurate positioning.
This is especially troublesome in iterative
operations. A much more flexible system is the
use of a separate local axis system for each
different object, shown in Figure 16.

Figure 17. Local Axis Systems

The homogeneous coordinate system described
earlier is used for this. Each separate object,
such as a wing or engine, has values stored with
it for X.Y.Z, and roll, pitch, and yaw. When the
object is drawn, the roll, pitch, and yaw terms
are used in the homogeneous rotation matrix
equations, then the X.Y., and Z values are added
to each point. These initial steps place the object
in the correct locarion and orientation within the
overall entity to be drawn {i.e., the airplane},
then the homogeneous transformations are again
used to create the desired display.

e L] B MMUAERIL R WRALARS LUL WLJ L

orientation is not explicitly known in terms of roll,
pitch, and yaw of an object. [n such cases, it is

necessary to allow those walues o be determined
from a desired orientation specified by the
designer. This is done with the aid of direction
cosines. If an object has an orthogonal local axis

system. the following equation converts pomnts on
the obiect into the global axis system.

(YD) o1obay * (YD X [Rsxs}

where

R ¥ My My
L“x“‘Y“:

iy

where the local axis system is specified b:.r_three
known points; P,, the axis origin, P;, a pomnt on
the local X-axis, and Pa, a point on the local XY

plane. L. M, and N terms are calculated as
follows:
= O
o2 R, JBU g JHE
ES g 'y g 'z g

where

7

R R A TR
R

1% &
S a Sl i T
where
e @k = %16y =
Ry = (2 - 2005 - X)) - (5 - ID0G - X))

Ry = (Xp = X)) (Y3 = ¥p) - (X3 - X0 - Yy)

4) - O = 1)@ =)

and
R S T—
he R e Ry R

Ty Ny
= ek -
M =y - Nl

13

BUC RIS 1S [Ne same equanon as used in the
homogeneous rotational transformations th=1)
described earlier, so the terms of the R matrices
must be egual. To take advantage of this, the
roll, pitch, and vaw transformation matrices must
be combined te a single matrix. This requires
selection of the order in which these matrices will
be applied. If they are combined first as roll
times piteh, and then times vaw, the resulting R
matrix 1s formed:

L
| |cass cosdj fcasa sine]

! | /siny sina cassY-cosy find|[¢ v 3ina

| Ticosy sina coséi=suny sing![{cosy sis

!

L ' n ol

Equating terms to the previous matrix gives
nine equations (below) in three unknown variables.

cose cosg = L,

cosa sind = Ly

-sina = L,

sinY sina cosf - cosy sing = My
sinY sina sing + CosY cosf = M,
sin¥ cosa = Mg :
COSY sino cosg + sinY sing =
cosY sina sing - sinY cosg = Ny
cosY cosa = N, :

=
=

Erom the equations we gbtain:

@ = sin-l {-L3)
3 = cos ‘1(0 i “-i(__l-y)
cosa cosa

wvagret o ME Ny N
i 4 sin (cﬁ'ﬁ s Te

Either of the two possible values of « are
correct. §and ¥ are uniquely determined once a
is selected.

The required X, Y, and I local axis origin
values are the coordinates of Py, which were
subtracted from the coordinates of P; and P3 to
get a pure totation problem prior to calculation
of L, M, and N terms.

There is a trivial case to consider. If
cos @ = 0, there is no sclution by this method.
This occurs when the local X' axis aligns with the
global Z axis. This is indicated when |Lz] =1
and Lx = Ly = 0, thus @ = {-L,} x =/2,

As we have selected rotation order of roll,
then pitch, then yaw, it follows that when pitch
is (- 7/2), the roll and yaw must sum to the total
angle 4 between the local Y' axis and the global Y
axis. If the pitch is + 7 /2, the vaw has
negative sign, thus;

(46}
{47}

B - Ly Y= 9, where
9 = sin"! (M) = cos't M)

Any combination of 8 and ¥ meeting equation 46
is correct.

In the preceding calculations for L, M, and N
terms, 1t 15 wise to test that those terms do not
exceed bv some small amowmt the allowable range of
minus one to positive one. Also, 1f a term 1s
very close to zero, one, or minus one, set 1t to
exactly that value. This minumzes difficulties
arising from computer precision.

This capability can be greatly expanded
through the wuse of geometric relatlonships to
establish desired orientations. For example,
rotations about some point can be made i the
olobal axis system by selecting three points on
each object (such as (0.0,0), <(0.0.1), and
{1.,0.0)) and rotating them as desired, then
calculating the resultant X.Y.Z, roll. pitch. and
yaw. This can also be used to swing objects
about some trunion axis such as shown in Fig-
ure 18. Description of these techniques i1s beyond
this paper. but they are reasonably easy to derive
from a foundation in analvtical geometry Be
advised that the trivial cases (i.e., divide by
zero) are waiting to trap the unwary.

Figure 18. Wheel Rotation About a Trunnion

ANIMATION

Animation is emerging as a potent future tool
for aircraft design. It offers capabilities to
visualize Kkinematics, time-dependent analysis, and
fourth-dimension solution spaces. Also, animation
15 an excellent briefing tool.

(Classical animation is done one frame at a
time. Cartoonists draw Mickey in a pose, then
draw another picture with him moved just a
fraction of an inch, and so-on. The same process
is used m compuler animation.

Using the homogeneous coordinate
transformations, it is easy to roil an object around
in any direction. Also, the shape of any object
can be altered on the computer. If local axis
systems are employed, the relative positioning of
objects can be easily wvaried. Figure 19 shows an
ejection sequence "animated" in this fashion.

Figure 19. Ejection Sequence

To perform computer animation. a program is
written which makes any or all of these motions in
very small incremental steps. When each frame is
drawn. the image is captured on either film or
videotape and the computer draws the next [rame.

Frames can be taken with special devices sold
for that purpose. [t is also possible to use a
regular terminal and a motion picture camers
capable of single frame exposure.

This requires a bit of special circuitry*. The
computer must be able to signal the camera Lo take
a picture. This can be done by tving in to the
terminal pin used to trigger a hardcopy, or 1L can
be done by painting a dot in a corner of the
screen which is sensed by a taped-on photocell,
The camera then shoots a frame and advances
itself. The next frame can then be drawn. Note
that some storage tubes automatically shift the
screen coordinate system after each erase to
prevent "wearing" a spot into the sereen. This
reqguires a number of erase commands {(eight on
Tektronix scopes) to cycle the coordinate system
back to its original location. Otherwise, the
animated image will jump around a small but
annoying amount.

With current computer graphics equipment,
real-time animation 15 eXtremely expensive.
However, sophisticated aircraft simulators are
capable of producing amazingly realistic animated
images which respond in real time to both pilot
inputs and the inputs of the instructors. These
use special techniques for rapid shading, colering.
and hidden-line removal, inciuding the use of
microprocessors dedicated to those tasks. In the
future these capabilities shcould be available for
computer-aided design.

INTERACTIVE ANALYSIS

As promised, this paper has focused on
design aspects of the use of computers. However,
interactive analysis plays an imporfant part in an
integrated design system. Interactive analvsis
includes geometric analvsis such as volume and
wetted area, as well as specific applications
analysis such as wave drag or radar cross section.

There are twe broad types of analvsis
programs. those that use actual three-dimensional
geometlry, and those that use scalar quantities
extracted from the geometry. In the first
category fall geometrie calculations such as volume
and wetted area (Figure 20) as well as supersonic
wave drag, vradar cross section, and other
caleulations in which the vehicle's actual shape is
used. In the latter category falls calculations
such as statistical weight estimation. most
first-order aerodynamic methods, and tail sizing by
volume coefficients. These later cases typically
require additional interaction by the user prior to
analysis. As an example, 1t may be necessary to
indicate the part of the fuselage length
corresponding to avienics bays prior to a
statistical weight estimation.

*See "Tekniques" Vol. 1, No. 5, Published by
Tektronix {page 5)

s T

= 1
=] 1
g ,"r - =

= -1
1 1 =z | o T~

o T = -
ARG SRTIE

Figure 20. Volume Distribution Analysis

The
course, to
This.

purpose of interactive analysis 1s, of
guide the designer. To accomplish
the analysis results must be presented in a
fashion which permits some 'preferred path"
change to be recognized. For example, a super-
sonic wave drag evaluation could indicate which
portions of the wehicle contribute the most to
drag. Aerodynamic center c¢ould be compared to
center of gravity to allow wing relocation or
internal component rearrangement. Therefore.
these routines must be "on-line", i.e., they must
be executed at the terminal by the designer and
produce results on the screen within a reasonable
time {less than five minutes is desirable}.

The programming for interactive analysis can
use any of the user-interface techniques described

earlier. For example, menues and prompts can be
used to lead the user through the particular
analysis. Alternately, an analysis command lang-

uage could be devised, or some mixture of the
two. Cursor and light pen devices can be used to
interact with the program, aloeng with function
kevs or other devices mentioned earlier.

Data can be displayed tabulariy or as 2-D
graphs, or even as three-dimensional surfaces.
Coler. f awvailable, is extremely useful for clear
presentation of data.

For interactive design applications, analysis
programs must have a great deal of interactive
capabilities. Input data sets must be capable of
bewng edited one item at a time, then re-analvzed.
Even more powerful capabilities can be developed
by specifying a range for some input variable(s),
and producing a plot of the impact of the changes.

Computer-aided aircraft design without

interactive, on-line analysis of the major wehicle
drivers only scratches the surface of the
computer's capability for improving design

productivity .

INITIAL GRAPHICS EXCHANGE SPECIFICATION
(IGES)

One critical requirement for a usable
computer-aided aircraft design capability 15 the
ability to interface data both to and frem analysis
programs and other design programs. There are
two ways to accomplish this.

The "brute-force” approach is to write a
separate interface program to convert to and from
the data format for each program communicated
with. This 1s a good approach for a limited
number of interfaces, as it requires conversion of
only those data required and can be tailored to
handle specific problems. However, it is too
cumbersome for interfacing between a large number
of programs. Also, it is difficult to patch an
additional program into the network.

15

Another approach is to have each program
convert its geometric data into a standard, or
"neutral” format. This may be more difficult to
program initiaily, but leads to large downstream
savings as the number of interfaced programs
gTOWS.

. The Naticnal Bureau of Standards is develop-
ing such a neutral format, called the Interactive
Graphics Exchange Specification {(IGES). This
format handles a varietv of geometric entities such
as lines, points, and arecs, as well as text and
related arrows, labels, etc. Currently, the IGES
is more oriented to 2-D CAD drawings, but new
releases of IGES are incorporating parametric sur-
face patches and other capabilities desired for con-
ceptual design geometry.

[GES is being implemented by virtually all
CAD/CAM wvendors. In the future IGES should
allow direct data exchange between widely different
programs. including the wital transition from
conceptual CAD to detail-design CAD/CAM.

SUMMARY

This paper has attempted to encapsulate, in
15 short pages, a large and dynamic field. The
basic concepts of computer graphics have been
introduced, with emphasis on application to the
area of aircraft design. As mentioned earlier, the
focus has been on conceptual design rather than
detailed parts design.

The attached article summarizes a design sys-
tem deveioped at Rockwell and tailored towards
conceptual design, called the Configuration Devel-
opment System (CDS). In reading the article,
note the use of featurss described above such as a
hybrid command language emploving prompts for
analysis routines. Also note that CDS was
developed for computers using storage tube termi-
nals {(permitting display of very complex designs),
which strongly influenced the user interface.

Fellewing the article are briefing charts which
lustrate. in some detail, creation of a tvpical air-
craft design on CDS Note the interaction between

design and analysis. All calculation shown are
interactive, and take under three minutes each.
ACKNOWLEDGEMENTS

The author extends sincere appreciation to
the following people, without whose advice and
"sharp red pencils" this paper would not have
been possible: James Berry, Mark Killian, Robert
Maler, James Klimmek, Charles Holt, and Kathie
Raymer. Also, thanks is given to Marty Trent for

the artwork of Figure 3.

